Worksheet week 4 - MA

- MAC 2312, Spring 2016

1. Use FTC or geometry to evaluate each integral:

(a)
$$\int_0^3 |2x-1| dx$$
 (b) $\int_1^2 \frac{x^2+1}{x} dx$ (c) $\int_0^{\pi/3} \sec^2 x dx$

2. Find the average value of $f(x) = \frac{1}{x^2+1}$ on the interval [-1, 1] and find all values of $x^* \in [-1, 1]$ so that $f(x^*)$ equals the average value of f on [-1, 1]. Why is such a value x^* guaranteed to exist?

3. Use substitution to compute each integral:

$$(a) \int_{e}^{e^{2}} \frac{1}{x\sqrt{\ln x}} dx \qquad (b) \int_{0}^{1} \frac{x}{x^{2}+1} dx$$

4. Given that $F(x) = \int_0^x \sqrt{8t - t^2} dt$, for $x \in [0, 8]$, do the following:

- (a) Determine the values of F(0), F(4), F(8). Hint: Complete the square and use geometry.
- (b) Determine F'(x) and F''(x). (c) Based on parts (a) and (b), sketch the graph of the function y = F(x), for $x \in [0, 8]$. What kind of point is x = 4 for the graph of y = F(x)?