1. Use FTC or geometry to evaluate each integral:
(a) $\int_{0}^{3}|2 x-1| d x$
(b) $\int_{1}^{2} \frac{x^{2}+1}{x} d x$
(c) $\int_{0}^{\pi / 3} \sec ^{2} x d x$
2. Find the average value of $f(x)=\frac{1}{x^{2}+1}$ on the interval $[-1,1]$ and find all values of $x^{*} \in[-1,1]$ so that $f\left(x^{*}\right)$ equals the average value of f on $[-1,1]$. Why is such a value x^{*} guaranteed to exist?
3. Use substitution to compute each integral:
(a) $\int_{e}^{e^{2}} \frac{1}{x \sqrt{\ln x}} d x$
(b) $\int_{0}^{1} \frac{x}{x^{2}+1} d x$
4. Given that $F(x)=\int_{0}^{x} \sqrt{8 t-t^{2}} d t$, for $x \in[0,8]$, do the following:
(a) Determine the values of $F(0), F(4), F(8)$. Hint: Complete the square and use geometry.
(b) Determine $F^{\prime}(x)$ and $F^{\prime \prime}(x)$.
(c) Based on parts (a) and (b), sketch the graph of the function $y=F(x)$, for $x \in[0,8]$. What kind of point is $x=4$ for the graph of $y=F(x)$?
