1. Evaluate (a) $\int \sin ^{2} x \cos ^{3} x d x$
(b) $\int \tan ^{2} x \sec ^{4} x d x$
(c) $\int \frac{1}{3 x^{2}+4} d x$
(d) $\int \frac{x}{\sqrt{1-x^{4}}} d x$
2. The tank of a fuel truck is a cylinder of radius 3 ft and length 30 ft . The tank sits horizontally with the lower side at an altitude of 2 ft above the ground (wheels of the truck are 2 ft high). Assuming that the tank is initially half-full, set up an integral that represents the total work required to completely fill up the tank by pumping up gasoline from ground level. The density of gasoline is $\rho=45 \mathrm{lb} / \mathrm{ft}^{3}$. (Just set up. The calculation of the integral is not required. Make sure to show on a picture what variable(s) you are using.)
3. Suppose you have to drill a narrow but deep pit into the ground. The pit is cylindrical, with a radius of 1 ft and with a depth of 1000 ft . The density of the rock encountered varies, so assume that at a depth of $x \mathrm{ft}$ from the ground, the density is given by some function $\rho(x) \mathrm{lbs} / \mathrm{ft}^{3}$.
(a) Write a formula to express the total mass of the material removed during drilling.
(b) Write a formula to express the total work done in removing the drilled material to the ground level.
