\qquad
\qquad

Worksheet week 1
 - MAC 2312, Spring 2017

1. A basketball tossed straight up in the air reaches a high-point h_{0} and falls to the floor. Each time the ball bounces to the floor it rebounds to a (constant) ratio r of its previous height $(0<r<1)$. Assume the initial height is $h_{0}=20 \mathrm{ft}$, and the ratio $r=3 / 4$. Let h_{n} be the high-point of the ball after the n-th bounce.
(a) Find a recurrence relation and an explicit formula for the sequence $\left\{h_{n}\right\}_{n}$.
(b) What is the height of the ball after the 10th bounce? after the 20th bounce?
(c) What is the limit of the sequence $\left\{h_{n}\right\}_{n}$?
2. In this problem you will prove (with Calculus) that the area of a circle of radius r is given by $A=\pi r^{2}$.
(a) Consider a regular pentagon inscribed in this circle and let A_{5} denote the area of this pentagon. Find a formula for A_{5} in terms of the radius r of the circle (of course, some factor involving $\sin (\pi / 5)$ will also appear).
Hint: Using the center of the circle, divide the pentagon into 5 congruent triangles.
(b) Consider now a regular polygon with n-sides inscribed in this circle and let A_{n} denote the area of this pentagon. Following your reasoning in part (a), find a formula for A_{n} in terms of the radius r of the circle.
(c) Give an informal reason why $A=\lim _{n \rightarrow+\infty} A_{n}$ and then compute the limit to get the famous $A=\pi r^{2}$.
3. Suppose your doctor prescribes a $100-\mathrm{mg}$ dose of an antibiotic every 24 hours. Furthermore, the drug is known to have a half-life of 24 hours; that is, every 24 hours, half of the drug in your blood is eliminated. Let d_{n} be the amount of the drug in your blood after the nth dose.
(a) Find a recursive formula for this sequence. (Hint: Think how d_{n+1} is obtained in terms of d_{n}.)
(b) List the first 6 terms of the sequence $\left\{d_{n}\right\}_{n}$ and graph them.
(c) Take the limit in both sides of the recursive relation you found in part (a) to find the limit of the sequence $\left\{d_{n}\right\}_{n}$. What is the practical significance of this limit?
(d) Part (c) was (partly) based on the assumption that the sequence $\left\{d_{n}\right\}_{n}$ is convergent. Give an argument to show that the sequence $\left\{d_{n}\right\}_{n}$ is monotone and bounded and, hence, convergent.
