1. Use FTC or geometry to evaluate each integral:
(a) $\int_{1}^{2} \frac{x^{2}+1}{x} d x$
(b) $\int_{0}^{\pi / 3} \sec ^{2} x d x$
(c) $\int_{0}^{3} \sqrt{6 x-x^{2}} d x \quad$ Hint: Complete the square and graph $y=\sqrt{6 x-x^{2}}$
2. Suppose a gauge at the outflow of a reservoir measures the flow rate of water $r(t)$, in $\mathrm{ft}^{3} / \mathrm{min}$, at t minutes since the valve is open.
(a) In one sentence, explain what the following integral represents: $\int_{2}^{6} r(t) d t$
(b) Suppose now the flow rate is given by the function $r(t)=\left\{\begin{array}{ll}50 t & \text { if } 0 \leq t \leq 4 \\ 200 & \text { if } 4<t \leq 10\end{array}\right.$ Graph this function.
(c) With the function $r(t)$ from part (b), find the total amount of water that flows out of the reservoir in the interval $[0,10]$ minutes.
