\qquad

Panther ID:

\qquad
Worksheet week 9 - Trigonometric substitutions

- MAC 2312, Spring 2017

Trigonometric substitutions are generally useful when dealing with integrals involving expressions of the type $\sqrt{a^{2}-x^{2}}$, or $\sqrt{a^{2}+x^{2}}$, or $\sqrt{x^{2}-a^{2}}$. The general idea of a trig. substitution is to use the basic trig. identities

$$
\sin ^{2} \theta+\cos ^{2} \theta=1, \quad \tan ^{2} \theta+1=\sec ^{2} \theta,
$$

to get rid of square-root in the integral.
General rules: (I wrote the first one, you should fill in the blanks for the other two)

- If the integrand involves $\sqrt{a^{2}-x^{2}}$, then the substitution $x=a \sin \theta$ will usually be useful because
$\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}=\sqrt{a^{2} \cos ^{2} \theta}=a \cos \theta$.
- If the integrand involves $\sqrt{a^{2}+x^{2}}$, then the substitution $x=$ \qquad will usually be useful because $\sqrt{a^{2}+x^{2}}=$
\qquad
\qquad
- If the integrand involves $\sqrt{x^{2}-a^{2}}$, then the substitution $x=$ \qquad will usually be useful because $\sqrt{x^{2}-a^{2}}=$ \qquad
Next, compute each of the integrals, by using the appropriate trigonometric substitution.

1. $\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}$
2. $\int \frac{d x}{\left(4 x^{2}-1\right)^{3 / 2}} d x$
3. $\int_{3}^{4} \frac{1}{\sqrt{x^{2}-6 x+10}} d x$ Hint: First, complete the square, then use a trig sub.
4. (bonus, if you have time) Earlier in the course we mentioned that it is not easy to compute the integral $\int \sqrt{a^{2}-x^{2}} d x$
Using a trig substitution, now you can compute it. Do so!
Hint: Along the way, you'll encounter the integral $\int \cos ^{2} \theta d \theta$. The easiest way to compute this is to use the double angle identity $\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2}$ and then integrate. However, don't forget that you still have to express your answer back in terms of x.
