Name: \qquad MAT 3501
Worksheet - Aug. 31
\qquad

Fall 2017

1. Prove Euclid's theorem: There are infinitely many primes.
2. (a) Prove: to check that a given integer N is prime is enough to verify that it is not divisible by primes $\leq \sqrt{N}$. Apply this to check that 2017 is prime.
(b) For each of the following numbers, find their largest prime factors:
(b1) $2015!+2016!$
(b2) $2016!+2017$!
(b3) $2017!+2018$!
3. Given any integer $M \geq 3$ (if you want, you could take $M=2017$), show that there exist an integer N so that all the consecutive numbers $N+2, N+3, N+4, \ldots N+M$ are composite. (Thus, this exercise is showing that you can find (finite) sets of consecutive composite numbers of arbitrary length.)
