Name: \qquad
Worksheet - Sep. 5
MAT 3501
\qquad

1. (a) Use the Euclidean algorithm to find $\operatorname{gcd}(360,132)$. You can confirm your result using the prime factorization as well. In practice, for large numbers, the Euclidean algorithm is much more efficient (in terms of computing time) for finding gcd than the prime factorization.
(b) Find $\operatorname{lcm}(360,132)$ in two ways: first using the prime factorization of the numbers, then using the stated theorem about the relation between gcd and lcm.
2. Find $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ if $a=2^{3} \times 3 \times 5 \times 7, b=2^{2} \times 5^{3} \times 11$. Explain, in words, how you generalize this to find $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ from the prime factorization of the numbers a, b. Also explain why the rules you discovered are consistent with the stated theorem that

$$
\operatorname{lcm}(a, b) \cdot g c d(a, b)=a b, \text { for any positive integers } a, b
$$

3. Prove that any two successive Fibonacci numbers $F_{n}, F_{n+1}, n \geq 2$ are relatively prime. Recall that the Fibonacci sequence is defined recursively by $F_{n+1}=F_{n}+F_{n-1}$, for $n \geq 1$ and $F_{0}=1, F_{1}=1$.
4. Prove that if $a d-b c=1$ then the fraction $\frac{a+b}{c+d}$ is irreducible. (Assume that a, b, c, d are all positive integers.)
5. With this exercise we'll prove (without using prime factorization) that

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b .
$$

Fill in the following sketch of proof: Let $D=\operatorname{gcd}(a, b)$. Then $a=a_{1} \cdot D, b=b_{1} \cdot D$, for some integers a_{1}, b_{1}.
(a) Argue that $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$ (that is, a_{1} and b_{1} must be relatively prime).
(b) Next let $M=\frac{a b}{\operatorname{gcd}(a, b)}=a_{1} b_{1} D$. Note that M is a common multiple of a and b (why?).

It remains to show that M is the lowest common multiple.
(c) Let m another common multiple of a and b. We'll show that $M \mid m$, so $M \leq m$. To get this, write $m=k a=l b$, for some integers k, l, or $m=k a_{1} D=l b_{1} D$. On the other hand, by part (a), there are integers x, y so that $a_{1} x+b_{1} y=1$. Multiply this relation by m and show that both terms in the left side are multiples of M.

