Name: \qquad

PantherID:
Due Tuesday, Oct. 27, 2015

1. (10 pts) Exercise 11, page 107 textbook.
2. (10 pts) Exercise 16, page 107 textbook.
3. (10 pts) The subset of \mathbb{R}^{ω} defined by

$$
H=\prod_{n \geq 1}[0,1 / n]
$$

is called the Hilbert cube.
(a) Show that H is closed in \mathbb{R}^{ω} with respect to both the box and the product topologies.
(b) Find $\operatorname{int}(H)$ if \mathbb{R}^{ω} has the box topology and find $\operatorname{int}(H)$ if \mathbb{R}^{ω} has the product topology.
4. (10 points bonus) Let ℓ^{2} be the subset of \mathbb{R}^{ω} consisting of all sequences $\mathbf{x}=\left\{x_{n}\right\}_{n}$ such that $\sum x_{n}^{2}$ converges. Then the formula

$$
d(\mathbf{x}, \mathbf{y})=\left(\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2}\right)^{1 / 2}
$$

defines a metric on ℓ^{2}, called the ℓ^{2}-metric. The space ℓ^{2} can be endowed with four different topologies: three subspace topologies inherited from \mathbb{R}^{ω} - the box, the uniform and the product topologies - and one given by the ℓ^{2}-metric.
(a) Show that on ℓ^{2} the following strict inclusions between the four topologies hold:

$$
\text { box topology } \supset \ell^{2} \text {-topology } \supset \text { uniform topology } \supset \text { product topology } .
$$

(b) Note that the Hilbert cube H from Problem 3 is a subspace of ℓ^{2}. Show that on H the following relations between the four induced subspace topologies hold:

$$
\text { box topology } \supset \ell^{2} \text {-topology }=\text { uniform topology }=\text { product topology }
$$

Comment: The last problem contained a serious mistake in the first version. Since it is a bit tedious to give all details for part (a), I will consider Problem 4 as optional, but you'll receive bonus points if you can do it.

