Name: _

PantherID: _

Homework 4 - Topology - Fall 2015

Due Tuesday, Oct. 27, 2015

1. (10 pts) Exercise 11, page 107 textbook.

2. (10 pts) Exercise 16, page 107 textbook.

3. (10 pts) The subset of \mathbb{R}^{ω} defined by

$$H = \prod_{n \ge 1} [0, 1/n]$$

is called the Hilbert cube.

(a) Show that H is closed in \mathbb{R}^{ω} with respect to both the box and the product topologies.

(b) Find int(H) if \mathbb{R}^{ω} has the box topology and find int(H) if \mathbb{R}^{ω} has the product topology.

4. (10 points bonus) Let ℓ^2 be the subset of \mathbb{R}^{ω} consisting of all sequences $\mathbf{x} = \{x_n\}_n$ such that $\sum x_n^2$ converges. Then the formula

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{n=1}^{\infty} (x_n - y_n)^2\right)^{1/2}$$

defines a metric on ℓ^2 , called the ℓ^2 -metric. The space ℓ^2 can be endowed with four different topologies: three subspace topologies inherited from \mathbb{R}^{ω} – the box, the uniform and the product topologies – and one given by the ℓ^2 -metric.

(a) Show that on ℓ^2 the following strict inclusions between the four topologies hold:

box topology $\supset \ell^2\text{-topology} \supset$ uniform topology \supset product topology ~ .

(b) Note that the Hilbert cube H from Problem 3 is a subspace of ℓ^2 . Show that on H the following relations between the four induced subspace topologies hold:

box topology $\supset \ell^2$ -topology = uniform topology = product topology .

Comment: The last problem contained a serious mistake in the first version. Since it is a bit tedious to give all details for part (a), I will consider Problem 4 as optional, but you'll receive bonus points if you can do it.