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Exam 1 MAA 4211 Spring 2002
To receive credit you MUST show your work.

1. (15 pts) Prove that
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2), for all a1, a2, b1, b2 ∈ R.

When does equality hold?

Solution: Expanding both sides, the inequality is equivalent to:
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or further to
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2
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2b
2
1.

But in the right hand side we recognize that we have a perfect square, thus the given inequality is
equivalent to:

0 ≤ (a1b2 − a2b1)2,

which is obviously true.
Equality holds if and only if a1b2 − a2b1 = 0. 2

Observation 1: Note that, assuming that b1, b2 are non-zero, the condition a1b2 − a2b1 = 0 can also be
written as a1

b1
= a2

b2
. Thus one can say that equality holds when the terms bi are proportional to the terms

ai.
Observation 2: The inequality in this problem is a particular case of the so called Cauchy-Schwarz
inequality which states that:

(a1b1 + a2b2 + ... + anbn)2 ≤ (a2
1 + a2

2 + ... + a2
n)(b2

1 + b2
2 + ... + b2

n), for all a1, ...an, b1, ...bn ∈ R, n ∈ N.

The Cauchy-Schwarz inequality is of fundamental importance in many areas of mathematics. Try to also
prove the general case by expanding both sides and grouping the terms to form some perfect squares.

2. (15 pts) (a) (5 pts) State the Bolzano-Weierstrass theorem.
Solution: Any bounded sequence of real numbers has a convergent subsequence.

(b) (10 pts) Is the converse of the Bolzano-Weierstrass theorem true? Justify your answer.
Solution: The converse of the Bolzano-Weierstrass theorem would be: If a sequence has a convergent
subsequence, then the sequence is bounded.
This statement is false. One example to show this would be for instance xn = n + (−1)nn. We have that
x2k = 2k, so the sequence is not bounded, as we can find terms of the sequence larger than any constant
M (by taking k ∈ N large enough so that 2k > M). But on the other hand, x2k+1 = 0, for any k ∈ N,
so the subsequence {x2k+1}k trivially converges to 0. 2

Observation: Of course many other examples like this could be constructed and you should come up with
your own.



3. (20 pts) Let f be a real function. Write the definition for each of the following:

lim
x→a−

f(x) = L, where a, L ∈ R.

Solution:
∀ε > 0,∃δ > 0 such that ∀x, (a− δ < x < a → |f(x)− L| < ε). 2

lim
x→+∞

f(x) = −∞.

Solution:
∀m ∈ R,∃M ∈ R such that ∀x, (x > M → f(x) < m). 2

4. (20 pts) (a) (5 pts) Prove that if x is an upper bound for a set E ⊂ R and x ∈ E, then x is the
supremum of E.
Solution: It is given that x is an upper bound for E. Suppose M is another upper bound for E. Since
x ∈ E, it follows that x ≤ M . Thus x is the smallest upper bound of E, thus, it is the supremum of E.
2

(b) (5 pts) State without proof an analogous statement for the infimum of E.
Solution: If x is a lower bound for a set E ⊂ R and x ∈ E, then x is the infimum of the set E. 2

(c) (10 pts) Find the supremum and the infimum of the set E = {1 + (−1)n(1 + 1
n) | n ∈ N}.

Solution: The set E can be alternatively described as E = {− 1
2k−1 , 2 + 1

2k | k ∈ N}. The following
inequalities are obvious

−1 ≤ − 1
2k − 1

< 2 +
1
2k
≤ 5

2
, ∀k ∈ N.

Thus the set E is bounded from below by −1 and bounded from above by 5/2. But −1 and 5/2 are
elements of the set E. Thus from parts (a) and (b), it follows that supE = 5/2, infE = −1. 2



5. (20 pts) Suppose 2 ≤ x1 < 3 and xn+1 = 2 +
√

xn − 2 for n ∈ N. Study the monotonicity and the
convergence of the sequence {xn}n. Completely justify all your claims.
Solution: First we prove by induction that 2 ≤ xn < 3 for any n ∈ N.
For n = 1 this is given by hypothesis. Assume that 2 ≤ xn < 3 for a given n. Then 0 ≤ xn − 2 < 1, thus
0 ≤

√
xn − 2 < 1, so 2 ≤ xn+1 = 2 +

√
xn − 2 < 3. Thus 2 ≤ xn < 3 for any n ∈ N, so we proved that

the sequence is bounded.
Next we show that the sequence is increasing. This can be done again by induction, but it is also possible
to do it directly, using the bounds we obtained in the first step.
Recall that if y ∈ R, 0 ≤ y < 1, we have

√
y ≥ y. Since we showed 2 ≤ xn < 3, we thus have

0 ≤ xn − 2 < 1, so
√

xn − 2 ≥ xn − 2. This implies that xn+1 = 2 +
√

xn − 2 ≥ xn, for an arbitrary
n ∈ N, thus our sequence is increasing. Note also that if x1 = 2, then xn = 2 for any n (can be shown
immediately by induction), so the sequence is constant, hence trivially convergent to 2. If x1 > 2, then
all inequalities are strict, so our sequence is strictly increasing.
We showed that {xn}n is bounded and increasing, so by the monotone convergence theorem, the sequence
is convergent. Let’s denote the limit with L. Taking the limit as n →∞ in the recursive relation, we get
L = 2 +

√
L− 2. Solving we get two solutions L1 = 2 and L2 = 3. As we noted above, if x1 = 2, the

sequence is constant 2, so the limit is 2. If x1 > 2, then 2 < x1 < x2 < ... < xn < ... < 3, so the limit is
the supremum of the sequence, and the supremum cannot be 2. Thus the limit is 3. 2

Observation: Another solution, perhaps even shorter, can be obtained by showing from the recursive
relation that xn = 2 + (x1 − 2)1/(2n), ∀n ∈ N. Try to show this and then get the rest of the problem
based on this observation (look also at the Example 2.21, page 45 textbook).



6. (20 pts) Show that a sequence {xn}n is not bounded from above if and only if there exists a subsequence
{xnk

}k such that xnk
→∞ as k →∞. (Note that you have to prove both implications.)

Solution: First of all, {xn}n is bounded from above, by definition, if and only if there exists a constant
M ∈ R, such that xn ≤ M, ∀n ∈ N. Negating this, {xn}n is not bounded from above if and only if

∀M ∈ R, ∃nM ∈ N, such that xnM > M. (1)

In the above the subscript M for nM , just indicates the dependence on M of the rank.
Now let us prove the equivalence asked in the statement.
(⇐) This implication is easy. Assume that a subsequence {xnk

}k → ∞ as k → ∞. By definition,
∀M ∈ R, ∃K ∈ N, such that if k ≥ K, then xnk

> M . Thus relation (1) is trivially satisfied, taking nM

to be, for instance nK .

(⇒) This is a bit harder. We assume that relation (1) is true and we’ll construct inductively a subsequence
{xnk

}k which will approach ∞ as k →∞.
To pick the first term of our subsequence, apply first (1) with M = M1 = 1. It follows that there exists
n1 ∈ N such that xn1 > 1. Now the idea is to apply (1) with a bigger and bigger M . But just choosing
M = 2,M = 3, etc. may not work, because we have no guarantee that the ranks n2, n3, etc. which we
get from (1) will be in increasing order.
Here is how we pick the second term of the subsequence. Let M2 = max{2, x1, x2, ..., xn1} and apply (1)
with M = M2. It follows that there exists n2 ∈ N such that xn2 > M2. From the choice of M2 we deduce
two things. First, xn2 > M2 ≥ 2. Secondly, xn2 > M2 ≥ xl, for any l ∈ {1, 2, ..., n1}; in particular, we get
that n2 > n1 because otherwise xn2 would be equal to one of the xl, l ∈ {1, 2, ..., n1}.
Suppose now that we picked n1 < n2 < ... < nk, such that xnl

> l, for any l ∈ {1, 2, ..., k} and we’ll
construct the k + 1-th term of the subsequence. Let Mk+1 = max{2, x1, x2, ..., xnk

} and apply (1) with
M = Mk+1. It follows that there exists nk+1 ∈ N such that xnk+1

> Mk+1. From the choice of Mk+1 it
follows as above that nk+1 > nk and that xnk+1

> k + 1.
Thus by induction we construct the subsequence {xnk

}k of {xn}n, with the property that xnk
> k, for

any k ∈ N. The (extended) comparison Theorem implies immediately that xnk
→∞ as k →∞. 2


