Exam 2 MAA 4211
 Spring 2002

To receive credit you MUST show your work.

1. (15 pts) State the Mean Value Theorem.

Solution: If f is continuous on $[a, b]$ and is differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
2. (20 pts) Suppose that

$$
f_{\alpha}(x)= \begin{cases}|x|^{\alpha} \cos \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{cases}
$$

(a) (10 pts) If $\alpha>0$, show that f is continuous at $x=0$.

Solution: If $\alpha>0,|x|^{\alpha} \rightarrow 0$ as $x \rightarrow 0$. Since $\cos \frac{1}{x}$ is bounded on its domain of definition, by the squeeze theorem for functions it follows that

$$
\lim _{x \rightarrow 0} f_{\alpha}(x)=\lim _{x \rightarrow 0}|x|^{\alpha} \cos \frac{1}{x}=0=f_{\alpha}(0) .
$$

(b) (10 pts) If $\alpha>1$, show that f is differentiable at $x=0$.

Solution: By definition, we need to show that the limit

$$
\lim _{x \rightarrow 0} \frac{f_{\alpha}(x)-f_{\alpha}(0)}{x}
$$

exists and is finite. But

$$
\lim _{x \rightarrow 0} \frac{f_{\alpha}(x)-f_{\alpha}(0)}{x}=\lim _{x \rightarrow 0} \frac{|x|^{\alpha}}{x} \cos \frac{1}{x} .
$$

As in part (a), the limit is 0 , because $\frac{|x|^{\alpha}}{x}$ approaches 0 as x approaches 0 (because $\alpha>1$ now) and $\cos \frac{1}{x}$ is bounded. Thus the derivative at $x=0$ exists and is equal to 0 .
3. (25 pts) (a) (15 pts) Suppose that f is differentiable on a nonempty, open interval (a, b), with f^{\prime} bounded on (a, b). Prove that f is uniformly continuous on (a, b).

Solution: By assumption $\exists M>0$ such that $\left|f^{\prime}(x)\right| \leq M$, for any $x \in(a, b)$.
Let $\epsilon>0$ and take $\delta=\epsilon / M$. Let $y, z \in(a, b)$ such that $|z-y|<\delta$. By the mean value theorem applied to f on the interval between y and z, there exists c such that $f(z)-f(y)=f^{\prime}(c)(z-y)$. Thus

$$
|f(z)-f(y)|=\left|f^{\prime}(c)\right||z-y| \leq M|z-y|<M \delta=\epsilon
$$

Since this is true for any y, z such that $|z-y|<\delta$, it follows that f is uniformly continuous on (a, b).
(b) (10 pts) Give an example to show that if the hypothesis f^{\prime} bounded on (a, b) is omitted, then the statement of (a) is no longer true.

Solution: Let $f:(0,1) \rightarrow \mathbf{R}$, defined by $f(x)=\ln x . f$ is differentiable on $(0,1)$, and its derivative $f^{\prime}(x)=1 / x$ is clearly not bounded on $(0,1)$. The function f is not uniformly continuous because it cannot be extended by continuity at 0 (the limit of f as $x \rightarrow 0_{+}$is $-\infty$).
4. (15 pts) Show that $\ln (x+1) \leq x$, for all $x \geq 0$.

Solution: Let $f(x)=x-\ln (x+1)$. Note that for any $x \geq 0, f^{\prime}(x)=1-1 /(x+1) \geq 0$. Thus f is increasing on the interval $[0, \infty)$. Thus if $x \geq 0$, then $f(x) \geq f(0)$. Noting that $f(0)=0$, this is exactly the inequality we had to prove.
5. (15 pts) Suppose $[a, b]$ is a closed, bounded, nondegenerate interval. Is the following statement true? For any continuous function $f:[a, b] \rightarrow \mathbf{R}$, the function $|f|$, defined by $|f|(x)=|f(x)|$, is integrable on $[a, b]$. Briefly justify your answer.
Solution: Yes, since f is continuous on $[a, b]$, so is $|f|$, hence, by theorem $5.10,|f|$ is integrable on $[a, b]$.
6. (20 pts) Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous and increasing. Prove that $\sup f(E)=f(\sup E)$ for every nonempty set $E \subseteq[a, b]$.
Solution: Let $E \subseteq[a, b]$. Thus E is bounded, so $s=\sup E$ is finite and $s \in[a, b]$. Because f is increasing, for any $x \in[a, b]$, we have $f(a) \leq f(x) \leq f(b)$. In particular $f(E)$ is bounded, so $\sup f(E)$ is finite.
Again because f is increasing and $s \geq x, \forall x \in E$, we have $f(s) \geq f(x) \forall x \in E$. Thus, $f(s)$ is an upper bound for $f(E)$, so we get $f(\sup E) \geq \sup f(E)$.
To obtain the other inequality, let x_{n} be a sequence of elements from E such that $x_{n} \rightarrow \sup E$ (such a sequence exists, by the approximation property of the supremum). Then $\sup f(E) \geq f\left(x_{n}\right)$, for any $n \in \mathbf{N}$ (because $\left.x_{n} \in E\right)$. Taking the limit on n in this inequality and using the fact that f is continuous, we get $\sup f(E) \geq f(s)=f(\sup E)$.

