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Exam 2 MAA 4211 Spring 2002
To receive credit you MUST show your work.

1. (15 pts) State the Mean Value Theorem.

Solution: If f is continuous on [a, b] and is differentiable on (a, b), then there exists c ∈ (a, b) such that
f(b)− f(a) = f ′(c)(b− a). 2

2. (20 pts) Suppose that

fα(x) =

{
|x|αcos 1

x if x 6= 0
0 if x = 0.

(a) (10 pts) If α > 0, show that f is continuous at x = 0.

Solution: If α > 0, |x|α → 0 as x → 0. Since cos 1
x is bounded on its domain of definition, by the squeeze

theorem for functions it follows that

lim
x→0

fα(x) = lim
x→0

|x|αcos
1
x

= 0 = fα(0). 2

(b) (10 pts) If α > 1, show that f is differentiable at x = 0.

Solution: By definition, we need to show that the limit

lim
x→0

fα(x)− fα(0)
x

exists and is finite. But
lim
x→0

fα(x)− fα(0)
x

= lim
x→0

|x|α

x
cos

1
x

.

As in part (a), the limit is 0, because |x|α
x approaches 0 as x approaches 0 (because α > 1 now) and cos 1

x
is bounded. Thus the derivative at x = 0 exists and is equal to 0. 2



3. (25 pts) (a) (15 pts) Suppose that f is differentiable on a nonempty, open interval (a, b), with f ′

bounded on (a, b). Prove that f is uniformly continuous on (a, b).

Solution: By assumption ∃ M > 0 such that |f ′(x)| ≤ M , for any x ∈ (a, b).
Let ε > 0 and take δ = ε/M . Let y, z ∈ (a, b) such that |z − y| < δ. By the mean value theorem applied
to f on the interval between y and z, there exists c such that f(z)− f(y) = f ′(c)(z − y). Thus

|f(z)− f(y)| = |f ′(c)||z − y| ≤ M |z − y| < Mδ = ε.

Since this is true for any y, z such that |z − y| < δ, it follows that f is uniformly continuous on (a, b). 2

(b) (10 pts) Give an example to show that if the hypothesis f ′ bounded on (a, b) is omitted, then the
statement of (a) is no longer true.

Solution: Let f : (0, 1) → R, defined by f(x) = lnx. f is differentiable on (0, 1), and its derivative
f ′(x) = 1/x is clearly not bounded on (0, 1). The function f is not uniformly continuous because it
cannot be extended by continuity at 0 (the limit of f as x → 0+ is −∞). 2

4. (15 pts) Show that ln(x + 1) ≤ x, for all x ≥ 0.

Solution: Let f(x) = x − ln(x + 1). Note that for any x ≥ 0, f ′(x) = 1 − 1/(x + 1) ≥ 0. Thus f is
increasing on the interval [0,∞). Thus if x ≥ 0, then f(x) ≥ f(0). Noting that f(0) = 0, this is exactly
the inequality we had to prove. 2



5. (15 pts) Suppose [a, b] is a closed, bounded, nondegenerate interval. Is the following statement true?
For any continuous function f : [a, b] → R, the function |f |, defined by |f |(x) = |f(x)|, is integrable on
[a, b]. Briefly justify your answer.

Solution: Yes, since f is continuous on [a, b], so is |f |, hence, by theorem 5.10, |f | is integrable on [a, b].
2

6. (20 pts) Suppose f : [a, b] → R is continuous and increasing. Prove that sup f(E) = f(supE) for
every nonempty set E ⊆ [a, b].

Solution: Let E ⊆ [a, b]. Thus E is bounded, so s = supE is finite and s ∈ [a, b]. Because f is increasing,
for any x ∈ [a, b], we have f(a) ≤ f(x) ≤ f(b). In particular f(E) is bounded, so sup f(E) is finite.

Again because f is increasing and s ≥ x, ∀x ∈ E, we have f(s) ≥ f(x) ∀x ∈ E. Thus, f(s) is an upper
bound for f(E), so we get f(supE) ≥ sup f(E).

To obtain the other inequality, let xn be a sequence of elements from E such that xn → supE (such
a sequence exists, by the approximation property of the supremum). Then sup f(E) ≥ f(xn), for any
n ∈ N (because xn ∈ E). Taking the limit on n in this inequality and using the fact that f is continuous,
we get sup f(E) ≥ f(s) = f(supE). 2


