Name:

SSN: ____

Exam 2 MAA 4211 Spring 2002 To receive credit you MUST show your work.

1. (15 pts) State the Mean Value Theorem.

Solution: If f is continuous on [a, b] and is differentiable on (a, b), then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b-a). \Box

2. (20 pts) Suppose that

$$f_{\alpha}(x) = \begin{cases} |x|^{\alpha} \cos \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

(a) (10 pts) If $\alpha > 0$, show that f is continuous at x = 0.

Solution: If $\alpha > 0$, $|x|^{\alpha} \to 0$ as $x \to 0$. Since $\cos \frac{1}{x}$ is bounded on its domain of definition, by the squeeze theorem for functions it follows that

$$\lim_{x \to 0} f_{\alpha}(x) = \lim_{x \to 0} |x|^{\alpha} \cos \frac{1}{x} = 0 = f_{\alpha}(0). \square$$

(b) (10 pts) If $\alpha > 1$, show that f is differentiable at x = 0.

Solution: By definition, we need to show that the limit

$$\lim_{x \to 0} \frac{f_{\alpha}(x) - f_{\alpha}(0)}{x}$$

exists and is finite. But

$$\lim_{x \to 0} \frac{f_{\alpha}(x) - f_{\alpha}(0)}{x} = \lim_{x \to 0} \frac{|x|^{\alpha}}{x} \cos \frac{1}{x}.$$

As in part (a), the limit is 0, because $\frac{|x|^{\alpha}}{x}$ approaches 0 as x approaches 0 (because $\alpha > 1$ now) and $\cos \frac{1}{x}$ is bounded. Thus the derivative at x = 0 exists and is equal to 0. \Box

3. (25 pts) (a) (15 pts) Suppose that f is differentiable on a nonempty, open interval (a, b), with f' bounded on (a, b). Prove that f is uniformly continuous on (a, b).

Solution: By assumption $\exists M > 0$ such that $|f'(x)| \leq M$, for any $x \in (a, b)$.

Let $\epsilon > 0$ and take $\delta = \epsilon/M$. Let $y, z \in (a, b)$ such that $|z - y| < \delta$. By the mean value theorem applied to f on the interval between y and z, there exists c such that f(z) - f(y) = f'(c)(z - y). Thus

 $|f(z) - f(y)| = |f'(c)||z - y| \le M|z - y| < M\delta = \epsilon.$

Since this is true for any y, z such that $|z - y| < \delta$, it follows that f is uniformly continuous on (a, b). \Box

(b) (10 pts) Give an example to show that if the hypothesis f' bounded on (a, b) is omitted, then the statement of (a) is no longer true.

Solution: Let $f: (0,1) \to \mathbf{R}$, defined by $f(x) = \ln x$. f is differentiable on (0,1), and its derivative f'(x) = 1/x is clearly not bounded on (0,1). The function f is not uniformly continuous because it cannot be extended by continuity at 0 (the limit of f as $x \to 0_+$ is $-\infty$). \Box

4. (15 pts) Show that $\ln(x+1) \le x$, for all $x \ge 0$.

Solution: Let $f(x) = x - \ln(x+1)$. Note that for any $x \ge 0$, $f'(x) = 1 - 1/(x+1) \ge 0$. Thus f is increasing on the interval $[0, \infty)$. Thus if $x \ge 0$, then $f(x) \ge f(0)$. Noting that f(0) = 0, this is exactly the inequality we had to prove. \Box

5. (15 pts) Suppose [a, b] is a closed, bounded, nondegenerate interval. Is the following statement true? For any continuous function $f : [a, b] \to \mathbf{R}$, the function |f|, defined by |f|(x) = |f(x)|, is integrable on [a, b]. Briefly justify your answer.

Solution: Yes, since f is continuous on [a, b], so is |f|, hence, by theorem 5.10, |f| is integrable on [a, b].

6. (20 pts) Suppose $f : [a, b] \to \mathbf{R}$ is continuous and increasing. Prove that $\sup f(E) = f(\sup E)$ for every nonempty set $E \subseteq [a, b]$.

Solution: Let $E \subseteq [a, b]$. Thus E is bounded, so $s = \sup E$ is finite and $s \in [a, b]$. Because f is increasing, for any $x \in [a, b]$, we have $f(a) \leq f(x) \leq f(b)$. In particular f(E) is bounded, so $\sup f(E)$ is finite.

Again because f is increasing and $s \ge x$, $\forall x \in E$, we have $f(s) \ge f(x) \ \forall x \in E$. Thus, f(s) is an upper bound for f(E), so we get $f(\sup E) \ge \sup f(E)$.

To obtain the other inequality, let x_n be a sequence of elements from E such that $x_n \to \sup E$ (such a sequence exists, by the approximation property of the supremum). Then $\sup f(E) \ge f(x_n)$, for any $n \in \mathbb{N}$ (because $x_n \in E$). Taking the limit on n in this inequality and using the fact that f is continuous, we get $\sup f(E) \ge f(s) = f(\sup E)$. \Box