4, page 23. Given $a \in \mathbf{R}$ and $n \in \mathbf{N}$, apply the density theorem of rational numbers to $a-1 / n<a+1 / n$ (the inequality holds because $n>0$). It follows that there exists $r_{n} \in \mathbf{Q}$ such that $a-1 / n<r_{n}<a+1 / n$. This double inequality is equivalent to $\left|a-r_{n}\right|<1 / n$.

8, page 24. Let E_{n} be the set $\left\{x_{n}, x_{n+1}, \ldots\right\}$.
Part 1: Since $\left|x_{n}\right|<M, \forall n \in \mathbf{N}$, it follows that M is an upper bound for the set E_{n}. By the completeness axiom, E_{n} has a (finite) real number supremum denoted by s_{n}. This is true for any n, so let s_{n+1} be the supremum of E_{n+1}. We next show that $s_{n} \geq s_{n+1}$. From the definition of the supremum, s_{n} is an upper bound for E_{n}, thus $s_{n} \geq x_{i}$, for all $i \in\{n, n+1, n+2, \ldots\}$. In particular, it follows that s_{n} is an upper bound for the set E_{n+1} as well. But, again by the definition of the supremum, s_{n+1} is the lowest upper bound of E_{n+1}. Thus $s_{n} \geq s_{n+1}$ and since this is true for any n, we proved the statement regarding the suprema.
Part 2: Since $\left|x_{n}\right|<M, \forall n \in \mathbf{N}$, it also follows that M is an upper bound for the set $-E_{n}$. By the completeness axiom, the set $-E_{n}$ has a (finite) real number supremum which we denote by u_{n}. From Theorem 1.28, it then follows that the set $E_{n}=-\left(-E_{n}\right)$ has a real infimum t_{n} and $t_{n}=-u_{n}$. By applying Part 1 to the set $-E_{n}$, we have $u_{1} \geq u_{2} \geq \ldots \geq u_{n} \geq u_{n+1} \ldots$ and multiplying this by -1 , we get $t_{1} \leq t_{2} \leq \ldots \leq t_{n} \leq t_{n+1} \ldots$

