5, page 64. (i) We'll show that $\lim _{x \rightarrow a} h(x)=L$ using the sequential characterization of limits (Theorem 3.6).
Let $x_{n} \in I \backslash\{a\}$ be an arbitrary sequence such that $x_{n} \rightarrow a$. Because $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L$, from Theorem 3.6 we conclude that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=L$. From the hypothesis, we also deduce that $f\left(x_{n}\right) \leq$ $h\left(x_{n}\right) \leq g\left(x_{n}\right)$. Thus, applying the squeeze theorem for sequences (Theorem 2.9, part (i)), it follows that $h\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$. Applying again Theorem 3.6, it follows that $\lim _{x \rightarrow a} h(x)=L$.
(ii) We'll again use the sequential characterization of limits. Let $x_{n} \in I \backslash\{a\}$ be an arbitrary sequence such that $x_{n} \rightarrow a$. Because $\lim _{x \rightarrow a} f(x)=0$, it follows that $f\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $|g(x)| \leq M$ for all $x \in I \backslash\{a\}$, we get in particular that $\left|g\left(x_{n}\right)\right| \leq M$ for all $n \in \mathbf{N}$, thus the sequence $g\left(x_{n}\right)$ is bounded. From the squeeze theorem for sequences (Theorem 2.9, part (ii)), it follows that $f\left(x_{n}\right) g\left(x_{n}\right) \rightarrow 0$. Hence from Theorem 3.6, we get $\lim _{x \rightarrow a} f(x) g(x)=0$.

8, page 70.

(\Rightarrow) First assume that $\lim _{x \rightarrow \infty} f(x)=L$ and let $x_{n} \in(a, \infty)$ such that $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$. We want to show that $f\left(x_{n}\right) \rightarrow L$.
Let $\epsilon>0$. Since $\lim _{x \rightarrow \infty} f(x)=L$, there exists $M \in \mathbf{R}$ such that for any $x>M,|f(x)-L|<\epsilon$. Because $x_{n} \rightarrow \infty$, there exists a rank $N_{0} \in \mathbf{N}$ such that $\forall n \geq N_{0}, x_{n}>M$. Combining these, it follows that $\forall n \geq N_{0}$, $\left|f\left(x_{n}\right)-L\right|<\epsilon$. Thus $f\left(x_{n}\right) \rightarrow L$.
(\Leftarrow) Conversely, now assume that $f\left(x_{n}\right) \rightarrow L$ for any sequence $x_{n} \in(a, \infty)$ such that $x_{n} \rightarrow \infty$, and we'd like to prove that $\lim _{x \rightarrow \infty} f(x)=L$. We do this using a proof by contradiction. Suppose that $f(x)$ does not converge to L as x approaches a. Then there exists an $\epsilon_{0}>0$ such that for any $M \in \mathbf{R}$, there exists a real number x_{M} (which depends on M) such that $x_{M}>M$ and $\left|f\left(x_{M}\right)-L\right| \geq \epsilon_{0}$. In particular, for each natural number $n>a$ (taken as M in the above), we'll find a real number x_{n}, such that $x_{n}>n$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$. The inequality $x_{n}>n$ for any $n>a$ implies that the sequence $x_{n} \rightarrow \infty$, thus by assumption $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$. Thus $\left|f\left(x_{n}\right)-L\right|<\epsilon_{0}$, for n sufficiently large. But this is in contradiction with $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$, for any $n \in \mathbf{N}, n>a$.

