2 (b), (c), page 78. (b) The functions $g(x)=1-x, h(x)=1+x$ are continuous on $[0,1]$ and $h(x) \neq 0$ for any $x \in[0,1]$. By Theorem 3.22, it then follows that $f(x)=g(x) / h(x)$ is continuous on $[0,1]$.
(c) As in part (b), using Theorems 3.22 and 3.24, the function $f(x)$ is continuous at any $x \neq 0$. The only issue is the continuity at 0 . But since the function $\sin (1 / x)$ is bounded and $\sqrt{x} \rightarrow 0$ as $x \rightarrow 0_{+}$, from the squeeze theorem for functions (Theorem 3.9 (ii)) it follows that $\lim _{x \rightarrow 0_{+}} \sqrt{x} \sin (1 / x)=0$.

4, page 78. The condition $f(a)<M$ is equivalent to $M-f(a)>0$. Because $f(x)$ is continuous at a, there exists $\delta>0$ such that

$$
-(M-f(a))<f(x)-f(a)<M-f(a), \quad \forall x \in(a-\delta, a+\delta) .
$$

The right side of this inequality implies that $f(x)<M, \forall x \in(a-\delta, a+\delta)$.

