Solution Homework 6: MAA 4211

2 (b), (c), page 78. (b) The functions g(x) = 1 - x, h(x) = 1 + x are continuous on [0, 1] and $h(x) \neq 0$ for any $x \in [0, 1]$. By Theorem 3.22, it then follows that f(x) = g(x)/h(x) is continuous on [0, 1]. \Box

(c) As in part (b), using Theorems 3.22 and 3.24, the function f(x) is continuous at any $x \neq 0$. The only issue is the continuity at 0. But since the function $\sin(1/x)$ is bounded and $\sqrt{x} \to 0$ as $x \to 0_+$, from the squeeze theorem for functions (Theorem 3.9 (ii)) it follows that $\lim_{x\to 0_+} \sqrt{x} \sin(1/x) = 0$. \Box

4, page 78. The condition f(a) < M is equivalent to M - f(a) > 0. Because f(x) is continuous at a, there exists $\delta > 0$ such that

$$-(M - f(a)) < f(x) - f(a) < M - f(a), \ \forall x \in (a - \delta, a + \delta).$$

The right side of this inequality implies that $f(x) < M, \forall x \in (a - \delta, a + \delta)$. \Box