
Solution Homework 8: MAA 4211 Spring 2002

5, page 92. (a) If f is differentiable at a then f is continuous at a. Since
f(a) 6= 0, it follows from a result done in Chapter 3 (see lemma 3.28, or Ex.
4, p. 78) that f(x) 6= 0, for any x in an interval I = (a− δ, a + δ) around a.
Thus for any h ∈ (−δ, δ), f(a + h) 6= 0. 2

(b) We need to show that the limit

lim
h→0

1
f(a+h)

− 1
f(a)

h
exists, and is equal to − f ′(a)

f 2(a)
.

As f(a) 6= 0, we have that 1
f(a)

is well defined and, from part (a), also 1
f(a+h)

is well defined for h small enough. Then

lim
h→0

1
f(a+h)

− 1
f(a)

h
= lim

h→0

(f(a)− f(a + h)

h
· 1

f(a)f(a + h)

)
= − f ′(a)

f 2(a)
,

where the first equality is obtained after elementary algebra and the second
follows from the definition of the derivative at a and the fact that f is also
continuous at a. Thus ( 1

f

)′
(a) = − f ′(a)

f 2(a)
. 2

5, page 100. (a) Let x ∈ R\0 arbitrary. The conditions to apply the Mean
Value Theorem for f on the interval between 0 and x are satisfied, so there
exists y (between 0 and x) such that

f(x)− f(0) = f ′(y)(x− 0).

Thus, from the assumption, it follows that f(x)− f(0) = 0, for all x ∈ R. 2

(b) The inequality trivially holds for x = 0 (it’s actually equality in this case).
Again let x ∈ R\0 arbitrary and apply the Mean Value Theorem for f on the
interval between 0 and x. There exists y such that f(x)−f(0) = f ′(y)(x−0),
and given the hypothesis in this case implies

|f(x)− 1| = |f ′(y)||x| ≤ |x|.

But by triangle inequality |f(x)| − 1 ≤ |f(x)− 1|, so combining these we get
|f(x)| ≤ |x|+ 1, ∀x ∈ R. 2



(c) Let a < b arbitrary. By the Mean Value Theorem for f on the interval
[a, b], there exists c ∈ (a, b) such that f(b) − f(a) = f ′(c)(b − a). But by
assumption f ′(c) ≥ 0, and b− a > 0, so it follows that f(b)− f(a) ≥ 0. 2


