Hadamard's Maximum Determinant Problem

In 1893, Hadamard considered the following question:
Let A be an $n \times n$ matrix with entries of absolute value at most $M>0$. How large can the absolute value of the determinant of A be?
Somewhat surprisingly, the problem is easier in the case when the entries of A are complex numbers. Hadamard finds the complete solution in the complex case and leaves a conjecture that has become famous in the real case.
Denote by $\|\mathbf{z}\|$ the Euclidian norm of a vector $\mathbf{z}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbf{C}^{n}$, that is

$$
\|\mathbf{z}\|^{2}=\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\ldots+\left|\alpha_{n}\right|^{2}
$$

Theorem 1.1. (Hadamard, 1893) Let A be an $n \times n$ complex matrix with linearly independent columns $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{n}$. Then

$$
|\operatorname{det}(A)|^{2}=\left|\operatorname{det}\left(\bar{A}^{t} A\right)\right| \leq \prod_{k=1}^{n}\left\|\mathbf{z}_{k}\right\|^{2}
$$

with equality iff $\bar{A}^{t} A$ is a diagonal matrix(columns are orthogonal).

Proof

Using the Gram-Schmidt process, construct inductively mutually orthogonal vectors $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$ such that \mathbf{y}_{k} is a linear combination of $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{k}$ in which the coefficient of \mathbf{z}_{k} is 1 . Define:

$$
\mathbf{y}_{k}=\mathbf{z}_{k}-\sum_{i=1}^{k-1} \alpha_{k i} \mathbf{y}_{i}, \text { where } \alpha_{k i}=\frac{\left\langle\mathbf{z}_{k} \mid \mathbf{y}_{i}\right\rangle}{\left\langle\mathbf{y}_{i} \mid \mathbf{y}_{i}\right\rangle}
$$

a) $\mathbf{y}_{k} \neq 0$ since $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{k}$ are linearly independent.
b) $\left\langle\mathbf{y}_{k} \mid \mathbf{y}_{i}\right\rangle=\left\langle\mathbf{z}_{k} \mid \mathbf{y}_{i}\right\rangle-\alpha_{k 1}\left\langle\mathbf{y}_{1} \mid \mathbf{y}_{i}\right\rangle-\ldots-\alpha_{k i}\left\langle\mathbf{y}_{i} \mid \mathbf{y}_{i}\right\rangle=\left\langle\mathbf{z}_{k} \mid \mathbf{y}_{i}\right\rangle-\frac{\left\langle\mathbf{z}_{k} \mid \mathbf{y}_{i}\right\rangle}{\left\langle\mathbf{y}_{i} \mid \mathbf{y}_{i}\right\rangle}\left\langle\mathbf{y}_{i} \mid \mathbf{y}_{i}\right\rangle=0$.

Denote by B the matrix with columns $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}$. Because \mathbf{y}_{k} 's are mutually orthogonal, $\bar{B}^{t} B=\operatorname{diag}\left(\left\|\mathbf{y}_{1}\right\|^{2},\left\|\mathbf{y}_{2}\right\|^{2}, \ldots,\left\|\mathbf{y}_{n}\right\|^{2}\right)$
Because $\mathbf{z}_{k}=\mathbf{y}_{k}+\sum_{i=1}^{k-1} \alpha_{k i} \mathbf{y}_{i}$, matrices B and A are related via a transition matrix T, which is upper triangular and has 1's on the diagonal.

$$
B=T A, \text { where } T=\left(\begin{array}{cccc}
1 & \alpha_{12} & \ldots & \alpha_{1 n} \\
0 & 1 & \ldots & \alpha_{2 n} \\
. & . & \ldots & . \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

Thus, we have

$$
\begin{gathered}
\operatorname{det}(B)=\operatorname{det}(T A)=\operatorname{det}(T) \operatorname{det}(A)=\operatorname{det}(A) \text {, so }|\operatorname{det}(B)|^{2}=|\operatorname{det}(A)|^{2} \\
\text { But }|\operatorname{det}(B)|^{2}=\operatorname{det}\left(\bar{B}^{t} B\right)=\prod_{k=1}^{n}\left\|\mathbf{y}_{k}\right\|^{2}
\end{gathered}
$$

Since $\mathbf{z}_{k}=\mathbf{y}_{k}+\sum_{i=1}^{k-1} \alpha_{k i} \mathbf{y}_{i}$, using the orthogonality of \mathbf{y}_{k} 's, we have

$$
\left\langle\mathbf{z}_{k} \mid \mathbf{z}_{k}\right\rangle=\left\|\mathbf{z}_{k}\right\|^{2}=\left\langle\mathbf{y}_{k} \mid \mathbf{y}_{k}\right\rangle+\sum_{i=1}^{k-1}\left|\alpha_{k i}\right|^{2}\left\langle\mathbf{y}_{i} \mid \mathbf{y}_{i}\right\rangle=\left\|\mathbf{y}_{k}\right\|^{2}+\sum_{i=1}^{k-1}\left|\alpha_{k i}\right|^{2}\left\|\mathbf{y}_{i}\right\|^{2}
$$

In conclusion: $\left\|\mathbf{y}_{k}\right\|^{2} \leq\left\|\mathbf{z}_{k}\right\|^{2}$ with equality if and only if $\mathbf{y}_{k}=\mathbf{z}_{k}$. Thus

$$
|\operatorname{det}(A)|^{2}=|\operatorname{det}(B)|^{2}=\prod_{k=1}^{n}\left\|\mathbf{y}_{k}\right\|^{2} \leq \prod_{k=1}^{n}\left\|\mathbf{z}_{k}\right\|^{2}
$$

with equality if and only if $\mathbf{y}_{k}=\mathbf{z}_{k}$ for all k, i.e the matrix A had orthogonal columns to start with, i.e. $\bar{A}^{t} A$ is a diagonal matrix.

The next Corollaries give upper estimates for the maximum determinant problem.

Corollary 1.2

Let $A=\left(z_{i j}\right)$ be an $n \times n$ complex matrix with $\left|z_{i j}\right| \leq 1$, then $|\operatorname{det}(A)| \leq n^{\frac{n}{2}}$ with equality iff $\left|z_{i j}\right|=1$ for all $1 \leq i, j \leq n$ and $\bar{A}^{t} A=n I_{n}$.

Proof

Let \mathbf{z}_{k} be the k-column of A. Assume that the columns of A are linearly independent, as otherwise $\operatorname{det}\left(\bar{A}^{t} A\right)=0$ and the inequality is obvious. Since the absolute value of every column element is at most 1 , then: $\left\|\mathbf{z}_{k}\right\|^{2}=\left|z_{1 k}\right|^{2}+\ldots+\left|z_{n k}\right|^{2} \leq n$.

Thus

$$
|\operatorname{det}(A)|^{2} \leq \prod_{k=1}^{n}\left\|\mathbf{z}_{k}\right\|^{2} \leq n^{n}
$$

Equality holds if only if $\left|z_{i j}\right|=1$ and $\bar{A}^{t} A=n I_{n}$.

Corollary 1.3

Let $A=\left(z_{i j}\right)$ be an $n \times n$ complex matrix with $\left|z_{i j}\right| \leq M$, then $|\operatorname{det}(A)| \leq M^{n} n^{\frac{n}{2}}$ with equality iff $\left|z_{i j}\right|=M$ for all $1 \leq i, j \leq n$ and $\bar{A}^{t} A=M^{2} n I_{n}$.

Proof - Exercise 1

Now the natural question is whether the upper bound given by these estimates can be always achieved. Hadamard shows that the answer is affirmative in the complex case.

Definition 1.1. A complex $n \times n$ matrix $A=\left(z_{i j}\right)$ is said to be a Hadamard matrix of order n if $\left|z_{i j}\right|=1$ and $\bar{A}^{t} A=n I_{n}$.

Theorem 1.4 (Hadamard) For any natural number n, there exists a complex Hadamard matrix A of order n.

Proof - Exercise 2

$$
\text { Let } A=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & \xi_{1} & \ldots & \xi_{n-1} \\
1 & \xi_{1}^{2} & \ldots & \xi_{n-1}^{2} \\
\cdot & \cdot & \ldots & \ldots \\
1 & \xi_{1}^{n-1} & \ldots & \xi_{n-1}^{n-1}
\end{array}\right) \text {, }
$$

where $\xi_{k}=e^{\frac{i(2 k \pi)}{n}}, \quad 0 \leq k \leq n-1$ are the complex $n^{\text {th }}$ roots of unity. Show that this choice of A satisfies, indeed, $\bar{A}^{t} A=n I_{n}$.

Definition 1.2 A real $n \times n$ matrix $A=\left(x_{i j}\right)$ is said to be a Hadamard matrix of order n if $x_{i j}= \pm 1$ and $A^{t} A=n I_{n}$.
In view of the preceding Theorem, one asks if there exist real Hadamard matrices of any order n. For $n=2$, one easily checks that

$$
H(2)=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

is a Hadamard matrix. In higher dimensions however, it turns out that real Hadamard matrices will not always exist.

Theorem 1.5 (Hadamard)

Let $A=\left(\alpha_{i j}\right)$ be a real Hadamard matrix of order $n>2$. Then n is divisible by 4 .

Proof

If j and k are two different columns of A, these are orthogonal, so

$$
0=\sum_{i=1}^{n}\left(\alpha_{i j} \alpha_{i k}\right)= \pm 1 \pm 1 \pm \ldots \pm 1
$$

Thus, n must be even, and any two distinct columns have identical entries in exactly $n / 2$ rows.
Consider now j, k, l three different columns of A. Then:

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\alpha_{i j}+\alpha_{i k}\right)\left(\alpha_{i j}+\alpha_{i l}\right)= \\
=\sum_{i=1}^{n}\left(\alpha_{i j}^{2}\right)+\sum_{i=1}^{n}\left(\alpha_{i j} \alpha_{i l}\right)+\sum_{i=1}^{n}\left(\alpha_{i k} \alpha_{i j}\right)+\sum_{i=1}^{n}\left(\alpha_{i k} \alpha_{i l}\right)=n+0+0+0=n .
\end{gathered}
$$

But $\left(\alpha_{i j}+\alpha_{i k}\right)\left(\alpha_{i j}+\alpha_{i l}\right)=4$ if $j^{\text {th }}, k^{\text {th }}$ and $l^{\text {th }}$ columns all have the same entry in the $i^{\text {th }}$ row. Otherwise, the product $\left(\alpha_{i j}+\alpha_{i k}\right)\left(\alpha_{i j}+\alpha_{i l}\right)$ is 0 . Hence $n=4 p$ where p is the number of rows in which all the three columns have the same entry. In particular, any 3 different columns have the same entry in $\frac{n}{4}$ rows.
From Theorem 1.5, we conclude that in dimension $n>2$ real Hadamard matrices may exist only when n is divisible by 4 . It is still a conjecture to this date that this is the only restriction.

Hadamard Conjecture (1893)

There exist a real Hadamard matrix for every order n divisible by 4.

