$\qquad$

## To receive credit you MUST SHOW ALL YOUR WORK.

1. $(20+5 \mathrm{pts})$ For all parts of the problem let $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ and do the change of variables

$$
y_{1}=3 x_{1}-2 x_{2}, \quad y_{2}=x_{1}+x_{2} .
$$

(a) Solve the equation $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$, where $\mathbf{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$.

That is, express $x_{1}(t)$ and $x_{2}(t)$ in terms of the initial conditions $x_{1}(0), x_{2}(0)$.
(b) Solve the equation $\frac{d^{2} \mathbf{x}}{d t^{2}}=-A \mathbf{x}$.

That is, express $x_{1}(t)$ and $x_{2}(t)$ in terms of the initial conditions (values and first derivatives at $t=0$ ).
(c) (5 bonus points) Explain how the change of variables was found and why it works to decouple linear systems involving the given matrix $A$.

