To receive credit you MUST SHOW ALL YOUR WORK.

1. (10 pts) Show that the vector space $M_{n, n}(\mathbf{R})$ of real $n \times n$ matrices can be decomposed as the direct sum $M_{n, n}(\mathbf{R})=$ Sym $_{n} \oplus A$ Sym $_{n}$, where Sym $_{n}$ is the subspace of symmetric $n \times n$ matrices $\left(A^{T}=A\right)$ and A Sym $_{n}$ is the subspace of anti-symmetric $n \times n$ matrices $\left(A^{T}=-A\right)$. What are the dimensions of these subspaces?
(For the last question, look at the first exercise in your previous homework and generalize.)
2. (15 pts) A linear operator $p: V \rightarrow V$ is called a projector of the vector space V if $p^{2}=p$. We denote $p^{2}=p \circ p$. Show that if p is a projector of V, then:
(a) $V=\operatorname{Im} p \oplus \operatorname{Ker} p$;
(b) the operator $q=I d_{V}-p$ is also a projector of $V\left(I d_{V}\right.$ denotes the identity of $\left.V\right)$;
(c) the operator $s=2 p-I d_{V}$ is an involutive automorphism of V; that is, you should show that $s^{2}=I d_{V}$ and that s is an isomorphism from V to V.
3. (5 pts bonus) In this exercise $|A|$ denotes the cardinality of a set A. You can use the following known facts.

If $\mathcal{P}_{0}(A)$ denotes the set of finite subsets of A, then $|A|=\left|\mathcal{P}_{0}(A)\right|$ (i.e. there is a bijection between A and $\mathcal{P}_{0}(A)$). If $\mathcal{P}(A)$ denotes the set of all subsets of A, then $|A|<|\mathcal{P}(A)|$ (i.e., there is an injection from A to $\mathcal{P}(A)$, but not the other way around).

Let V be an infinite dimensional vector space over the field $\mathbb{Z}_{2}=\{0,1\}$, with a basis \mathcal{B}. Denote by V^{*} the dual space of V. Prove that $|V|=\left|\mathcal{P}_{0}(\mathcal{B})\right|=|\mathcal{B}|$, whereas $\left|V^{*}\right|=|\mathcal{P}(\mathcal{B})|$. Thus $\left|V^{*}\right|>|V|$, so V^{*} cannot be isomorphic to V.

