\qquad

To receive credit you MUST SHOW ALL YOUR WORK.

1. (10 pts) Suppose V is an n-dimensional vector space over the field \mathbb{K} and denote by $B(V \times V, \mathbb{K})$ the space of bilinear forms on V. Show that $B(V \times V, \mathbb{K})$ is a vector space isomorphic to the space of matrices $M_{n, n}(\mathbb{K})$. Moreover, through this isomorphism, symmetric bilinear forms correspond to symmetric matrices and anti-symmetric bilinear forms correspond to anti-symmetric matrices.
2. (20 pts) (a) The complex plane \mathbb{C} can be thought as a 1-dimensional complex vector space, or as the 2-dimensional real vector space \mathbb{R}^{2}, with the identification

$$
\mathbb{C} \ni(a+i b) \leftrightarrow\binom{a}{b} \in \mathbb{R}^{2} .
$$

Under this identification, determine the linear operator $J_{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that corresponds to the multiplication by i in \mathbb{C}. Show that $J_{0}^{2}=-I d$ and show that the matrix of J_{0} with respect to the standard basis in \mathbb{R}^{2} is

$$
A_{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text {. With a slight abuse of notation we denote the matrix by } J_{0} \text { as well. }
$$

Generalize to higher dimensions: under the identification

$$
\mathbb{C}^{n} \ni\left(\begin{array}{c}
a_{1}+i b_{1} \\
\ldots \\
a_{n}+i b_{n}
\end{array}\right) \leftrightarrow\left(\begin{array}{c}
a_{1} \\
b_{1} \\
\ldots \\
a_{n} \\
b_{n}
\end{array}\right) \in \mathbb{R}^{2 n}
$$

determine the linear operator $J_{0}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ that corresponds to the multiplication by i in \mathbb{C}^{n} and find its matrix with respect to the standard basis.
(b) Suppose V is a finite dimensional vector space and suppose J is an operator on V that satisfies $J^{2}=-I d$. Such a J is called an (almost) complex structure on V. Show that $\operatorname{dim}(V)$ must be even and show that there exists a basis of $V, \mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{f}_{1}, \mathbf{e}_{2}, \mathbf{f}_{2}, \ldots, \mathbf{e}_{n}, \mathbf{f}_{n}\right\}$, so that

$$
[J]_{\mathcal{B}}=\left(\begin{array}{cccc}
A_{0} & 0 & \ldots & 0 \\
0 & A_{0} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & A_{0}
\end{array}\right), \text { where } A_{0} \text { is the } 2 \times 2 \text { matrix from part (a) }
$$

3. (10 pts) Problem 14, page 67 textbook.
