\qquad

1. Consider the sequence:

$$
a_{1}=\sqrt{3}, \quad a_{2}=\sqrt{3+2 \sqrt{3}}, \quad a_{3}=\sqrt{3+2 \sqrt{3+2 \sqrt{3}}}, \quad a_{4}=\sqrt{3+2 \sqrt{3+2 \sqrt{3+2 \sqrt{3}}}}, \ldots
$$

(a) Find a recursion formula for a_{n+1}.
(b) Use induction to prove that $0 \leq a_{n} \leq 3$, for all $n \geq 1$.
(c) Use induction to prove that the sequence $\left\{a_{n}\right\}$ is increasing.
(d) By (b) and (c) it follows that the sequence is convergent (why?). Find its limit.

