\qquad
General Directions: Read the problems carefully and provide answers exactly to what is requested. Use complete sentences and use notation correctly. Incomprehensible work is worthless. I am grading the work, not just the answer. Don't rush, don't try to do too many steps of a computation at once; work carefully. Good luck!

1. (25 pts) Find the following limits (if the limit is infinite or does not exist, specify so)
(a) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+x-6}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{1-x}{x-2}$

Answers: (a) $6 / 5$
(b) $+\infty$

Solutions given in class.
(c) $\lim _{x \rightarrow 0} \frac{x+\sin (5 x)}{3 x+\tan (2 x)}$
(d) $\lim _{x \rightarrow+\infty} \frac{\cos x}{x}$

Answers: (c) 6/5
(d) 0 use the squeeze theorem.

Solutions given in class.
(e) $\lim _{x \rightarrow+\infty}\left(x-\sqrt{x^{2}+3 x}\right)$

Answer: (d) $-3 / 2$
Solutions given in class.
2. (10 pts) Let $f(x)=\frac{1}{x}$. Find $f^{\prime}(x)$ using the limit definition of the derivative.

Solution: Starting from the limit definition of derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h}=\lim _{h \rightarrow 0} \frac{-h}{x(x+h)} \cdot \frac{1}{h}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}} .
$$

3. (10 pts) Compute the derivative of each of the following functions:
(a) $f(x)=4 x^{3}-\frac{\sqrt{x}}{3}+\frac{10}{x^{3}}$
(b) $f(x)=x^{2} \cos x$

Solution: (a) $f(x)=4 x^{3}-\frac{1}{3} x^{1 / 2}+10 x^{-3}$
(b) apply product rule .

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{2}-\frac{1}{3} \cdot \frac{1}{2} x^{-1 / 2}-30 x^{-4} \\
& f^{\prime}(x)=12 x^{2}-\frac{1}{6 \sqrt{x}}-\frac{30}{x^{4}}
\end{aligned}
$$

4. (8 pts) Find $f^{\prime \prime}(x)$ for $f(x)=\sec x$.

Solution: $\quad f^{\prime}(x)=\sec x \tan x$. To find $f^{\prime \prime}(x)$ apply product rule:

$$
f^{\prime \prime}(x)=(\sec x)^{\prime} \tan x+\sec x(\tan x)^{\prime}=\sec x \tan x \tan x+\sec x \sec ^{2} x=\sec x \tan ^{2} x+\sec ^{3} x
$$

5. (8 pts) A particle moves on a line so that after t hours it is at $s(t)=3 t^{2}+t$ miles from its initial position.
(a) Find the average velocity of the particle in the first two hours. Give units for your answer.

Solution:

$$
v_{a v e}=\frac{s(2)-s(0)}{2-0}=\frac{14-0}{2}=7 \mathrm{mph}
$$

(b) Find the instantaneous velocity when $t=2$. Give units for your answer.

Solution: $v(2)=s^{\prime}(2)$. But $s^{\prime}(t)=6 t+1$, so $s^{\prime}(2)=13$. Thus $v(2)=13 m p h$.
6. (10 pts) Find the equation of the tangent line to the graph of $f(x)=\tan x$ at $x=\frac{\pi}{4}$.

Solution: The point has coordinates $\left(x_{0}, y_{0}\right)$, where $x_{0}=\frac{\pi}{4}, y_{0}=f\left(x_{0}\right)=\tan \left(\frac{\pi}{4}\right)=1$.
The slope of the tangent line is $m=f^{\prime}\left(\frac{\pi}{4}\right)$.
But $f^{\prime}(x)=\sec ^{2} x=\frac{1}{\cos ^{2} x}$. Thus $m=\frac{1}{\cos ^{2}\left(\frac{\pi}{4}\right)}=\frac{1}{1 / 2}=2$.
The tangent line is $y-1=2\left(x-\frac{\pi}{4}\right)$.
7. (12 pts) Given the function below

$$
g(x)= \begin{cases}x^{2}+k & \text { if } x<1 \\ 3 & \text { if } x=1 \\ -k x+3 & \text { if } x>1\end{cases}
$$

(a) (6 pts) Find, if possible, a value for the constant k which will make the function $g(x)$ continuous everywhere. If you think there is no such k, justify why not.
Solution: We would like to find k so that

$$
\lim x \rightarrow 1^{-} f(x)=\lim x \rightarrow 1^{+} f(x)=f(1)
$$

But $\lim x \rightarrow 1^{-} f(x)=1+k, \quad \lim x \rightarrow 1^{+} f(x)=-k+3, \quad$ and $f(1)=3$.
Thus, k should satisfy at the same time $1+k=3$ and $-k+3=3$. There is no value of k that will satisfy both conditions, thus there is no value of k that will make the function continuous.
(b) (6 pts) Sketch the graph of the function $g(x)$ when $k=2$.

Label carefully the coordinates of important points.
Solution given in class.
8. (12 pts) Sketch a graph of a function $f(x)$ satisfying all of the following conditions.
(i) The function is defined and is continuous everywhere except $x=0$ and $x=3$;
(ii) $\lim _{x \rightarrow 0^{-}} f(x)=+\infty$ and $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$;
(iii) $\lim _{x \rightarrow 3} f(x)=1$;
(iv) $\lim _{x \rightarrow-\infty} f(x)=-2$ and $\lim _{x \rightarrow+\infty} f(x)=0$.

Solution explained in class.
9. (10 pts) Find k if the curve $y=x^{2}+k$ is tangent to the line $y=6 x$.

Solution 1 (with calculus): The slope of $y=6 x$ is 6 . Thus we are looking for a point on the graph of $y=x^{2}+k$ where the slope is 6 . But $y^{\prime}=2 x$ (k is constant). Thus, solving $2 x=6$, we get $x=3$. Now for this to be indeed a tangency point the y values of the parabola and the line must coincide.
We get $3^{2}+k=6 \cdot 3$ and solve to obtain $k=9$.
Solution 2 (without calculus): Finding the intersection point(s) of the parabola and the line means we should solve the system formed by the equations $y=x^{2}+k$ and $y=6 x$.
Eliminating y, we get $x^{2}+k=6 x$, or $x^{2}-6 x+k=0$.
For the line to be tangent to the parabola, we the above equation should have only one solution. This correspond to finding k so that the left hand-side be a perfect square.
This happens precisely when $k=3^{2}=9$. The equation becomes $(x-3)^{2}=0$, so the tangency point is $x=3$.
10. (10 pts) Let $f(x), g(x)$ be two functions and let $q(x)=\frac{f(x)}{g(x)}$ be the quotient function.
(a) (2 pts) What is $q^{\prime}(x)$ in terms of f, g and their derivatives? (You are asked to just write the quotient rule.)

Solution:

$$
q^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

(b) (8 pts) In class we gave a proof for the product rule, but not for the quotient rule. Now you will prove the quotient rule from the product rule. Write $q(x) \cdot g(x)=f(x)$, take the derivative of both sides, solve for $q^{\prime}(x)$ and show that you will get exactly to the expression form (a).
Solution: Start from $q(x) \cdot g(x)=f(x)$ and take the derivative of both sides. Using product rule in the left side, get

$$
q^{\prime}(x) g(x)+q(x) g^{\prime}(x)=f^{\prime}(x)
$$

Now solve for $q^{\prime}(x)$:

$$
q^{\prime}(x) g(x)=f^{\prime}(x)-q(x) g^{\prime}(x), ; \text { so } \quad q^{\prime}(x)=\frac{f^{\prime}(x)-q(x) g^{\prime}(x)}{g(x)}
$$

Now replace $q(x)=\frac{f(x)}{g(x)}$ in the right side and do one more algebra step to show you get to formula in part (a).

