Exam 2- MAC 2311, F'11 NAME: Solution Key Panther ID: $\qquad$
General Directions: Read the problems carefully and provide answers exactly to what is requested. Use complete sentences and use notation correctly. Incomprehensible work is worthless. I am grading the work, not just the answer. Don't rush, don't try to do too many steps of a computation at once; work carefully. Good luck!

1. ( 8 pts ) Fill in the appropriate words or symbols:
(a) L'Hopital's rule applies directly to indeterminate forms (exceptional cases) of types $\frac{0}{0}, \frac{\infty}{\infty}$.
(b) If $f(x)$ is decreasing on $[0,2]$ then $f(0)>f(1)>f(2)$.
(c) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on the interval $(a, b)$.
(d) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then the point $x_{0}$ is a relative maximum for the function $f(x)$.
2. ( 24 pts ) Find the derivative ( 6 pts each). Simplify your answer when possible.
(a) $f(x)=\ln (4 x)+4^{x}$
(b) $g(x)=\arcsin (\cos x)$

$$
f^{\prime}(x)=\frac{1}{x}+4^{x} \ln 4
$$

$$
g^{\prime}(x)=\frac{1}{\sqrt{1-\cos ^{2} x}} \cdot(-\sin x)=-1
$$

(c) $h(x)=x e^{-x^{2}}$
(c) uses product rule and chain rule

$$
\begin{aligned}
& h^{\prime}(x)=e^{-x^{2}}+x e^{-x^{2}}(-2 x) \\
& h^{\prime}(x)=\left(1-2 x^{2}\right) e^{-x^{2}}
\end{aligned}
$$

(d) $y=x^{\ln x}$
(d) uses logarithmic differentiation

$$
\begin{aligned}
& \ln y=\ln \left(x^{\ln x}\right)=\ln x \cdot \ln x=(\ln x)^{2} \\
& \frac{1}{y} y^{\prime}=2(\ln x) \frac{1}{x} \\
& y^{\prime}=2 \frac{\ln x}{x} x^{\ln x}
\end{aligned}
$$

3. (16 pts) Find each of the following limits:
(a) $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\ln (x+1)}$
(b) $\lim _{x \rightarrow 0^{+}}(\sin x)^{x}$
(a) $\frac{0}{0}$ case; l'Hopital applies directly.
(b) $0^{0}$ case; use $A=e^{\ln A}$ trick.

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\ln (x+1)}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{\frac{1}{x+1}}=2
$$

$\lim _{x \rightarrow 0^{+}}(\sin x)^{x}=\lim _{x \rightarrow 0^{+}} e^{x \ln (\sin x)}=e^{\lim _{x \rightarrow 0^{+}} x \ln (\sin x)=e^{0}=1}$
It was shown in class how you get that $\lim _{x \rightarrow 0^{+}} x \ln (\sin x)=0$.
4. (12 pts) (a) (8 pts) Find the local linear approximation of the function $f(x)=\sqrt{x}$ at $x=4$.

The local lin. approximation is $f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$, where $x_{0}=4$.

$$
\begin{gathered}
f\left(x_{0}\right)=f(4)=\sqrt{4}=2 \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{\prime}\left(x_{0}\right)=f^{\prime}(4)=\frac{1}{4} . \\
\text { Thus } \sqrt{x} \approx 2+\frac{1}{4}(x-4), \text { for } x \text { near } 4 .
\end{gathered}
$$

(b) (4 pts) Use part (a) to approximate $\sqrt{3.98}$ without using a calculator.

$$
\sqrt{3.98} \approx 2+\frac{1}{4}(3.98-4)=1.995
$$

5. (12 pts) Find the equation of the tangent line to the curve $3 x-x^{2} y^{2}=2 y^{3}$ at the point $(1,1)$.

Use implicit differentiation.
$3-\left(2 x y^{2}+x^{2} 2 y y^{\prime}\right)=6 y^{2} y^{\prime}$ then distribute and move the terms containing $y^{\prime}$ in one side $3-2 x y^{2}=\left(2 x^{2} y+6 y^{2}\right) y^{\prime}, \quad$ therefore $y^{\prime}=\frac{d y}{d x}=\frac{3-2 x y^{2}}{2 x^{2} y+6 y^{2}}$.
The slope of the tangent line is $m=\frac{d y}{d x}(1,1)=\frac{1}{8}$, so tangent line is $y-1=\frac{1}{8}(x-1)$.
6. (12 pts) A rocket that is launched vertically is tracked by a radar station located on the ground 4 miles from the launch site. What is the vertical speed of the rocket at the instant its distance from the radar station is 5 miles and this distance increases at the rate of $3600 \mathrm{mi} / \mathrm{h}$ ?

Answer: $6000 \mathrm{mi} / \mathrm{h}$. See class notes for solution.
7. (16 pts) Give a complete graph of the function $f(x)=3 x^{4}-4 x^{3}+1$. Your work should include a sign chart for the derivative and the second derivative, the coordinates of the critical and inflection points, the end-behavior of the function. Determine also relative the relative maxima or minima (if any) for the function.
$f^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1)$, so critical points are $x=0, x=1$.
Do the sign chart and you should see that $f^{\prime}$ is negative on interval $(-\infty, 0)$, still negative on $(0,1)$, and positive on $(1,+\infty)$. Thus, $x=1$ is a relative min, but $x=0$ is neither a relative min, nor relative max (it is still a stationary point, so the tangent line at $x=0$ is horizontal as $\left.f^{\prime}(0)=0\right)$.
The second derivative is
$f^{\prime \prime}(x)=36 x^{2}-24 x=12 x(3 x-2), \quad$ so points where $f^{\prime \prime}(x)=0$ are $x=0, x=\frac{2}{3}$.
Doing the sign chart for $f^{\prime \prime}(x)$ determine the concavity of $f$ and see that both $x=0$ and $x=2 / 3$ are inflection points.

For the behavior of $f(x)$ at infinity note that $\lim _{x \rightarrow \pm \infty} f(x)=+\infty$.
Now you sketch the graph computing also the $y$-values at critical points for better accuracy.
8. (12 pts) (a) (6 pts) Show that the function $f(x)=\tan x-x$ is increasing over the interval $[0, \pi / 2)$.

$$
f^{\prime}(x)=\sec ^{2} x-1=\tan ^{2} x, \text { so } f^{\prime}(x) \geq 0 \text { for all } x \in[0, \pi / 2) .
$$

Thus $f(x)$ is increasing on $[0, \pi / 2)$.
(b) (6 pts) Use part (a) to show that $\tan x>x$, for any $x \in(0, \pi / 2)$.

By part (a), if $x \in(0, \pi / 2)$, then $f(x)>f(0)$, because $f(x)$ is increasing. But $f(0)=\tan 0-0=0$. Thus $\tan x-x>0$, so $\tan x>x$ for any $x \in(0, \pi / 2)$.

