Exam 2- MAC 2311, F'11 NAME: Solution Key Panther ID: ____

General Directions: Read the problems carefully and provide answers exactly to what is requested. Use complete sentences and use notation correctly. Incomprehensible work is worthless. I am grading the work, not just the answer. Don't rush, don't try to do too many steps of a computation at once; work carefully. Good luck!

1. (8 pts) Fill in the appropriate words or symbols:

- (a) L'Hopital's rule applies directly to indeterminate forms (exceptional cases) of types $\frac{0}{0}, \frac{\infty}{\infty}$.
- (b) If f(x) is decreasing on [0, 2] then f(0) > f(1) > f(2).
- (c) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is *increasing* on the interval (a, b).
- (d) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then the point x_0 is a relative maximum for the function f(x).

2. (24 pts) Find the derivative (6 pts each). Simplify your answer when possible.

(a)
$$f(x) = \ln(4x) + 4^x$$

 $f'(x) = \frac{1}{x} + 4^x \ln 4$
(b) $g(x) = \arcsin(\cos x)$
 $g'(x) = \frac{1}{\sqrt{1 - \cos^2 x}} \cdot (-\sin x) = -1.$

(c)
$$h(x) = xe^{-x^2}$$

(d) $y = x^{\ln x}$
(d) uses logarithmic differentiation
 $h'(x) = e^{-x^2} + xe^{-x^2}(-2x)$
 $h'(x) = (1-2x^2)e^{-x^2}$
(d) uses logarithmic differentiation
 $\ln y = \ln(x^{\ln x}) = \ln x \cdot \ln x = (\ln x)^2$
 $\frac{1}{y}y' = 2(\ln x)\frac{1}{x}$
 $y' = 2\frac{\ln x}{x}x^{\ln x}$

3. (16 pts) Find each of the following limits:

(a)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{\ln(x+1)}$$
 (b) $\lim_{x \to 0^+} (\sin x)$

(a) $\frac{0}{0}$ case; l'Hopital applies directly.

(b)
$$\lim_{x \to 0^+} (\sin x)^x$$

(b) 0^0 case; use $A = e^{\ln A}$ trick.

It was shown in class how you get that $\lim_{x\to 0^+} x \ln(\sin x) = 0.$

4. (12 pts) (a) (8 pts) Find the local linear approximation of the function $f(x) = \sqrt{x}$ at x = 4.

The local lin. approximation is $f(x) \approx f(x_0) + f'(x_0)(x-x_0)$, where $x_0 = 4$.

$$f(x_0) = f(4) = \sqrt{4} = 2 \quad f'(x) = \frac{1}{2\sqrt{x}}, \ f'(x_0) = f'(4) = \frac{1}{4}.$$

Thus $\sqrt{x} \approx 2 + \frac{1}{4}(x-4)$, for x near 4.

(b) (4 pts) Use part (a) to approximate $\sqrt{3.98}$ without using a calculator.

$$\sqrt{3.98} \approx 2 + \frac{1}{4}(3.98 - 4) = 1.995$$

5. (12 pts) Find the equation of the tangent line to the curve $3x - x^2y^2 = 2y^3$ at the point (1, 1).

Use implicit differentiation.

 $3-(2xy^2+x^22yy')=6y^2y'$ then distribute and move the terms containing y' in one side

 $3-2xy^2 = (2x^2y+6y^2)y'$, therefore $y' = \frac{dy}{dx} = \frac{3-2xy^2}{2x^2y+6y^2}$. The slope of the tangent line is $m = \frac{dy}{dx}_{(1,1)} = \frac{1}{8}$, so tangent line is $y-1 = \frac{1}{8}(x-1)$.

6. (12 pts) A rocket that is launched vertically is tracked by a radar station located on the ground 4 miles from the launch site. What is the vertical speed of the rocket at the instant its distance from the radar station is 5 miles and this distance increases at the rate of 3600 mi/h?

Answer: 6000 mi/h. See class notes for solution.

7. (16 pts) Give a complete graph of the function $f(x) = 3x^4 - 4x^3 + 1$. Your work should include a sign chart for the derivative and the second derivative, the coordinates of the critical and inflection points, the end-behavior of the function. Determine also relative the relative maxima or minima (if any) for the function.

 $f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$, so critical points are x = 0, x = 1.

Do the sign chart and you should see that f' is negative on interval $(-\infty, 0)$, still negative on (0, 1), and positive on $(1, +\infty)$. Thus, x = 1 is a relative min, but x = 0 is neither a relative min, nor relative max (it is still a stationary point, so the tangent line at x = 0 is horizontal as f'(0) = 0). The second derivative is

 $f''(x) = 36x^2 - 24x = 12x(3x - 2)$, so points where f''(x) = 0 are $x = 0, x = \frac{2}{3}$.

Doing the sign chart for f''(x) determine the concavity of f and see that both x = 0 and x = 2/3 are inflection points.

For the behavior of f(x) at infinity note that $\lim_{x \to \pm \infty} f(x) = +\infty$.

Now you sketch the graph computing also the y-values at critical points for better accuracy.

8. (12 pts) (a) (6 pts) Show that the function $f(x) = \tan x - x$ is increasing over the interval $[0, \pi/2)$.

 $f'(x) = \sec^2 x - 1 = \tan^2 x$, so $f'(x) \ge 0$ for all $x \in [0, \pi/2)$.

Thus f(x) is increasing on $[0, \pi/2)$.

(b) (6 pts) Use part (a) to show that $\tan x > x$, for any $x \in (0, \pi/2)$.

By part (a), if $x \in (0, \pi/2)$, then f(x) > f(0), because f(x) is increasing. But $f(0) = \tan 0 - 0 = 0$. Thus $\tan x - x > 0$, so $\tan x > x$ for any $x \in (0, \pi/2)$.