NAME: _____

Panther ID: _____

Exam 1 - MAC 2313 Spring 2007

To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (15 pts) Given the vectors $\mathbf{u} = -\mathbf{i} + \mathbf{k}$, $\mathbf{v} = -2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{w} = \mathbf{j} - \mathbf{k}$, find each of the following:

(a) $\|\mathbf{v} - 2\mathbf{u}\| =$

(b) the angle between the vectors \mathbf{v} and \mathbf{w} .

(c) the volume of the parallelipiped determined by \mathbf{u} , \mathbf{v} and \mathbf{w} . Interpret the answer.

2. (12 pts) Find the equation of the plane that contains the point A(-1, 4, -3) and the line x - 2 = t, y + 3 = 2t, z = -t.

3. (15 pts) Circle the correct answer:

(a) The surface $y^2 + 2z^2 = 1$ is a(n)

(i) ellipsoid	(ii) hyperboloid	(iii) elliptic cylinder	(iv) elliptic paraboloid
(b) The surface	$x + y^2 + 2z^2 = 1$ is a(n)		
(i) ellipsoid	(ii) hyperboloid	(iii) elliptic cylinder	(iv) elliptic paraboloid

(c) The area of the parallelogram with adjacent sides the vectors \mathbf{u} and \mathbf{v} is given by:

(i) $\mathbf{u} \cdot \mathbf{v}$ (ii) $\|\mathbf{u}\| + \|\mathbf{v}\|$ (iii) $\mathbf{u} \times \mathbf{v}$ (iv) $\|\mathbf{u} \times \mathbf{v}\|$

(d) Let $\mathbf{r}(t)$ be a curve in 3-space (t is an *arbitrary* parametrization). Denote by $\mathbf{N}(t)$, $\mathbf{B}(t)$ the normal, resp. binormal to the curve. The following two vectors are **always** perpendicular:

(i) $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ (ii) $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$ (iii) $\mathbf{B}(t)$ and $\mathbf{r}'(t) \times \mathbf{r}''(t)$ (iv) $\mathbf{r}'(t)$ and $\mathbf{N}(t)$

(e) If a particle travels with constant speed along a curve, then

(i)
$$\mathbf{a} = 0$$
 (ii) $a_T = 0$ (iii) $a_N = 0$ (iv) displacement is 0

(Notation: $\mathbf{a} = \text{acceleration vector}; a_T (a_N) = \text{the tangential (normal) component of acceleration.}$)

4. (12 pts) At the time t = 0 an object of mass m is launched from a height s_0 above the ground with an initial velocity vector \mathbf{v}_0 which makes an angle α with the horizontal. Denote by v_0 the initial speed of the object $(v_0 = \|\mathbf{v}_0\|)$. Starting from Newton's second law, $\mathbf{F} = m\mathbf{a}$, derive the parametric equations of motion.

5. (12 pts) Show that the line of intersection of the planes x + 2y - z = 2 and 3x + 2y + 2z = 7 is parallel to the line x = 1 - 6t, y = 3 + 5t, z = 2 + 4t.

6. (16 pts) Given the helix r(t) = 3 cos(2t) i + 3 sin(2t) j + 4t k, do the following:
(a) (8 pts) Find the parametric equations of the tangent line to the helix when t = 0.

(b) (8 pts) Find the arc-length parametrization of the helix with t = 0 as the reference point.

7. (6 pts) Show that $\frac{d}{dt}(\mathbf{r}(t) \times \mathbf{r}'(t)) = \mathbf{r}(t) \times \mathbf{r}''(t)$

8. (10 pts) (a) Determine the type of the quadric surface $z^2 - x^2 - 2y^2 = 4$ and sketch its graph.

(b) What is the intersection of the surface $z^2 - x^2 - 2y^2 = 4$ with the plane z = 3? What about and z = 1?

9. (12 pts) Find the curvature k(t) of the plane curve $\mathbf{r}(t) = e^t \cos t \mathbf{i} + e^t \sin t \mathbf{j}$.