\qquad
\qquad

Exam 1 - MAC 2313
To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (15 pts) Given the vectors $\mathbf{u}=-\mathbf{i}+\mathbf{k}, \mathbf{v}=-2 \mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{w}=\mathbf{j}-\mathbf{k}$, find each of the following:
(a) $\|\mathbf{v}-2 \mathbf{u}\|=$
(b) the angle between the vectors \mathbf{v} and \mathbf{w}.
(c) the volume of the parallelipiped determined by \mathbf{u}, \mathbf{v} and \mathbf{w}. Interpret the answer.
2. (12 pts) Find the equation of the plane that contains the point $A(-1,4,-3)$ and the line $x-2=t, y+3=2 t, z=-t$.
3. (15 pts) Circle the correct answer:
(a) The surface $y^{2}+2 z^{2}=1$ is a(n)
(i) ellipsoid
(ii) hyperboloid
(iii) elliptic cylinder
(iv) elliptic paraboloid
(b) The surface $x+y^{2}+2 z^{2}=1$ is a(n)
(i) ellipsoid
(ii) hyperboloid
(iii) elliptic cylinder
(iv) elliptic paraboloid
(c) The area of the parallelogram with adjacent sides the vectors \mathbf{u} and \mathbf{v} is given by:
(i) $\mathbf{u} \cdot \mathbf{v}$
(ii) $\|\mathbf{u}\|+\|\mathbf{v}\|$
(iii) $\mathbf{u} \times \mathbf{v}$
(iv) $\|\mathbf{u} \times \mathbf{v}\|$
(d) Let $\mathbf{r}(t)$ be a curve in 3 -space (t is an arbitrary parametrization). Denote by $\mathbf{N}(t), \mathbf{B}(t)$ the normal, resp. binormal to the curve. The following two vectors are always perpendicular:
(i) $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$
(ii) $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$
(iii) $\mathbf{B}(t)$ and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$
(iv) $\mathbf{r}^{\prime}(t)$ and $\mathbf{N}(t)$
(e) If a particle travels with constant speed along a curve, then
(i) $\mathbf{a}=0$
(ii) $a_{T}=0$
(iii) $a_{N}=0$
(iv) displacement is 0
(Notation: $\mathbf{a}=$ acceleration vector; $a_{T}\left(a_{N}\right)=$ the tangential (normal) component of acceleration.)
4. (12 pts) At the time $t=0$ an object of mass m is launched from a height s_{0} above the ground with an initial velocity vector \mathbf{v}_{0} which makes an angle α with the horizontal. Denote by v_{0} the initial speed of the object $\left(v_{0}=\left\|\mathbf{v}_{0}\right\|\right)$. Starting from Newton's second law, $\mathbf{F}=m \mathbf{a}$, derive the parametric equations of motion.
5. (12 pts) Show that the line of intersection of the planes $x+2 y-z=2$ and $3 x+2 y+2 z=7$ is parallel to the line $x=1-6 t, y=3+5 t, z=2+4 t$.
6. (16 pts) Given the helix $\mathbf{r}(t)=3 \cos (2 t) \mathbf{i}+3 \sin (2 t) \mathbf{j}+4 t \mathbf{k}$, do the following:
(a) (8 pts) Find the parametric equations of the tangent line to the helix when $t=0$.
(b) (8 pts) Find the arc-length parametrization of the helix with $t=0$ as the reference point.
7. $(6 \mathrm{pts})$ Show that $\frac{d}{d t}\left(\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right)=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t)$
8. (10 pts) (a) Determine the type of the quadric surface $z^{2}-x^{2}-2 y^{2}=4$ and sketch its graph.
(b) What is the intersection of the surface $z^{2}-x^{2}-2 y^{2}=4$ with the plane $z=3$? What about and $z=1$?
9. (12 pts) Find the curvature $k(t)$ of the plane curve $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$.
