\qquad
\qquad

Take-home Quiz 4 - Due Tue. Mar. 6
MAC 2313, Spring 2012
To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (6 pts) Consider a right circular cylinder with radius of the base r and height h. It is known that measurements of r and h can have each a 1% possible percentage error. Use differentials to estimate the percentage error in measuring the volume.
2. (8 pts) The temperature at the point (x, y) of a horizontal plate is given by $T(x, y)=2 y^{2}-4 x y-10 x-2 y+5$ Celsius degrees. Suppose that the y-axis points toward North, the x-axis towards East and that the distances on the plate are measured in meters.
(a) (4 pts) A bug stands at the point $(1,5)$ and heads directly North-East. Will it experience an increase or decrease in temperature? At what rate?
(b) (4 pts) If our bug initially stands at the point $(1,5)$, in which direction should the bug head to experience the greatest rate of increase in temperature? (Give your answer as a vector and as an approximate geographical direction.)
3. (8 pts) Suppose that $w=f(x, y), x=r \cos \theta$, and $y=r \sin \theta$. Show that

$$
\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}=\left(\frac{\partial w}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial w}{\partial \theta}\right)^{2}
$$

Hint: Use chain rule to find $\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta}$ in terms of $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$.

