\qquad
Take-home Quiz 6 - Due Tue. April 17

Panther ID:

\qquad

MAC 2313, Spring 2012

To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (8 pts) Consider the surface σ given as the graph of the function $z=f(x, y)$, where $(x, y) \in \mathcal{R}$ is a region in the $x y$-plane. Derive formula (2) for surface area on p. 1027 textbook

$$
S=\iint_{\mathcal{R}} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1}
$$

from the general formula (12) on p. 1035.
Hint: Such a surface has the obvious parametrization $x=u, y=v, z=f(u, v)$, or $\mathbf{r}(u, v)=<u, v, f(u, v)>$, with $(u, v) \in \mathcal{R}$.
2. (16 pts) (a) Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=(2 a)^{2}$ bounded between the planes $z=0$ and $z=a$. (a is a positive constant)
(b) Find the centroid of the surface in part (a).

