Name: \qquad
Exam 1 MTG 3212

Panther ID:
Spring 2010

You must show all relevant work to be eligible for credit. Your solutions should be concise and clearly written.

1. (20 pts) Fill in the blanks.
(a) A quadrilateral in which the diagonals bisect each other is a \qquad .
(b) The point equidistant to the vertices of a triangle is the \qquad and this point is situated at the intersection of the \qquad .
(c) Given two lines l_{1}, l_{2} that intersect at point A, the geometric locus of points equidistant to l_{1} and l_{2} is given by \qquad .
(d) The Euler line of a triangle contains the following important points
(e) For any closed curve in the plane of length L, the area A enclosed by the curve is at most —, with equality if and only if the curve is \qquad -.
2. (16 pts) (a) (6 pts) Give the definition of an isometry of the Euclidean plane \mathcal{E}^{2}, and the definition of an affine transformation of \mathcal{E}^{2}.
(b) (10 pts) Show that any isometry of \mathcal{E}^{2} is an affine transformation of \mathcal{E}^{2}.
3. (10 pts) For congruency of triangles, we have the well known case SSS (Side-Side-Side). Would a criterion SSSS work for congruency of two (plane) quadrilaterals? Justify your answer.
4. (20 pts) (a) Show that in a right-angle triangle the length of the altitude from the right vertex is the geometric mean of the length of the segments on the hypothenuse.
Concretely, suppose $\triangle A B C$ has a right vertex at A, and let D denote the foot of the altitude from A on $B C$. Show that $|A D|=\sqrt{|B D| \cdot|D C|}$.
(b) Is the converse true? Namely, suppose that in a triangle $\triangle A B C$ we have that $|A D|=$ $\sqrt{|B D| \cdot|D C|}$, where D is the foot of the altitude from A on $B C$. Does it follow that the triangle has a right vertex at A ? Justify your answer.
5. (20 pts) (a) Prove that in a triangle $\triangle A B C$, the external angle bisectors of $\angle B, \angle C$ and the internal angle bisector of $\angle A$ are concurrent in a point P.
(b) Denote by r_{A} the distance from the point P to $B C$. Find and justify a formula for r_{A} that involves only the lengths a, b, c of the sides of the triangle $\triangle A B C$.
6. (12 pts) Let P, Q, R denote the tangency points of the incircle with the sides $B C, C A, A B$, respectively, of a triangle $\triangle A B C$. Show that the lines $A P, B Q, C R$ are concurrent.
7. (12 pts) (Pythagoras in 3D) Suppose that a tetrahedron in space has a solid right angle at one vertex (like the corner of a cube). Suppose that \mathcal{A} is the area of the side opposite the solid right angle and that \mathcal{B}, \mathcal{C} and \mathcal{D} are the areas of the three other sides. Prove that $\mathcal{A}^{2}=\mathcal{B}^{2}+\mathcal{C}^{2}+\mathcal{D}^{2}$. (Hint: Use vectors!)
