Sketch of proof of the Euler line Theorem. It is slightly different than what was suggested in class. Fill in the details.

Theorem (Euler): In an arbitrary triangle $\triangle A B C$ the orthocenter H, the centroid G and the circumcenter O are always collinear. Moreover, $|H G|=2|G O|$.

Sketch of Proof: Let M and N be, respectively, the midpoints of segments $\overline{B C}$ and $\overline{A C}$ and let D and E be the feet of the altitudes from A and B.

Step 1. Show that $\triangle A H B \sim \triangle O M N$, using (AA). Deduce that $|A H|=2|O M|$.
Let now Q be the point of intersection of the line $A M$ with the line $H O$. We'll prove that $Q=G$, the centroid. To see this:

Step 2. Use (AA) to show $\triangle A Q H \sim \triangle M Q O$. Deduce that $|A Q|=2|Q M|$, thus Q trisects the median from A, so it must be the centroid G. From this similarity, you also get $|H G|=2|G O|$.

For the proof to be completely clean, before step 2 , you should also argue that the point Q of intersection of the lines $A M$ and $H O$ exists and that Q is between A and M and Q is between H and O. Can you justify these? How will the figure change if the triangle $\triangle A B C$ has an obtuse angle at A ? Argue that the proof still works though.

