Name: \qquad
Homework 1 MTG 3212

PanthID:
Spring 2010

1. (10 pts) (a) Show that if \mathbf{u} and \mathbf{v} are vectors in 3 -space

$$
\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\langle\mathbf{u}, \mathbf{v}\rangle)^{2} .
$$

(b) From (a) deduce that

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \| \sin \alpha \mid=\text { Area of parallelogram determined by } \mathbf{u} \text { and } \mathbf{v} \text {, }
$$

where α is the angle between the vectors \mathbf{u} and \mathbf{v}.
2. (10 pts) Show, using vectors, that if $A x+B y+C=0$ represents a line L in the plane \mathbf{R}^{2} and if $P_{0}\left(x_{0}, y_{0}\right)$ is a point in \mathbf{R}^{2}, then the distance between the point P_{0} and the line L is given by the formula

$$
d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}} .
$$

Note: This is Problem 2 from the Chapter 1 of your textbook (and it builds on Problem 1). It is also a part of Pb .50 , page 838, in the 8th edition of Anton's Calculus.

