\qquad
Homework 2 MTG 3212

1. (10 pts) (a) (Midline property of a triangle) Show that in a triangle $\triangle A B C$ if M, N are midpoints of sides $A B$ and $A C$, then the segment $M N$ is parallel to $B C$ and half as long as $B C$.
(b) Suppose $A B C D$ is an arbitrary quadrilateral in the plane. Show that the midpoints of $A B, B C, C D$, $D A$ form a parallelogram.

Note: I would like you to prove both parts of Problem 1 using vectors (it is not difficult), but if you are not able to do it with vectors, any solution is better than none!

Bonus question: (2 pts) Is the property still true if the points A, B, C, D are in 3 -space and they are not coplanar?
2. (10 pts) In class we showed how an affine map of the Euclidean space \mathcal{E}^{n} induces a linear map of the vector space \mathbb{R}^{n}. In this problem you are asked to show the converse.

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map. Consider also two points O, O^{\prime} in the Euclidean space \mathcal{E}^{n}. Define $\phi: \mathcal{E}^{n} \rightarrow \mathcal{E}^{n}$, by $\phi(O)=O^{\prime}$ and $\phi(P)=O^{\prime}+f(\overrightarrow{O P})$, where by the sum $A+\overrightarrow{\mathbf{v}}$ of a point with a vector, we understand the translation of the point A by the vector \mathbf{v}. Show that ϕ is an affine map.

