1. (21 pts) (a) In an arbitrary triangle $\triangle A B C$ let M be the midpoint of the side $B C$. Show that $|A M|^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}$, where a, b, c denote, as usual, the lengths of the sides of the triangle. Hint: Apply the Law of Cosines in the triangles $\triangle A M B$ and $\triangle A M C$ for the angles at M.
$N o t e$: This technique can be generalized in the case when M is not necessarily the midpoint of $B C$. One gets an expression for $|A M|^{2}$ in terms of the sides of the triangle and the lengths $|B M|$ and $|M C|$. This is the so called Stewart's theorem.
(b) Use part (a) to show that the midpoint M of $B C$ coincides with the circumcenter of the triangle if and only if $\triangle A B C$ has a right angle at A.
(c) Show that a triangle is isosceles if and only if two medians have the same length.

Note: You can do this using (a), but there is a nicer geometric way which I encourage you to find.

