1. Suppose X is a point in the plane and let k be a positive real number. Let $\delta_{X, k}: \mathcal{E}^{2} \rightarrow \mathcal{E}^{2}$ be the dilation of center X and factor k; that is, for any point $P, \delta_{X, k}(P)=P^{\prime}$, where P^{\prime} is defined by the property that $\overrightarrow{X P^{\prime}}=k \overrightarrow{X P}$.

Show that $\delta_{X, k}$ maps a circle of center O and radius $r, \mathcal{C}(O, r)$, in a circle $\mathcal{C}\left(O^{\prime}, r^{\prime}\right)$, where $O^{\prime}=\delta_{X, k}(O)$, and $r^{\prime}=k r$.
2. Prove that if an altitude of a triangle is extended to meet the circumcircle, then the side it intersects bisects the segment between the orthocenter and the circumcircle.
3. Given an arbitrary triangle $\triangle A B C$, let A^{\prime} denote the diametral opposite of A in the circumcircle of $\triangle A B C$. If H is the orthocenter of $\triangle A B C$, show that segments $\overline{H A^{\prime}}$ and $\overline{B C}$ bisect each other.
4. Put together Problems 1, 2, 3, to obtain an alternative proof of the nine-point-circle Theorem.

