1. (10 pts) In the complex plane \mathbb{C}, consider a circle $\mathcal{C}\left(z_{0}, r\right)$. Let z_{1}, z_{3} be two arbitrary complex number and denote by z_{2}, z_{4}, respectively, the inverses of z_{1}, z_{3} with respect to the circle $\mathcal{C}\left(z_{0}, r\right)$. Show that the cross-ratio $\left(z_{1}: z_{2} ; z_{3}: z_{4}\right)$ is a real number.

Hint: You can do the problem avoiding any computations. We have proved a result describing geometrically when the cross-ratio is a real number. With that, you can turn the problem into a geometry problem which is not hard to solve.
2. (10 pts) Consider a fractional linear transformation

$$
L(z)=\frac{a z+b}{c z+d}, \text { with } a, b, c, d \in \mathbb{R} \text { and } a d-b c=1
$$

Show that

$$
\operatorname{Im}(L(z))=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}, \text { where } \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i} \text { denotes the imaginary part of } z \in \mathbb{C}
$$

