1. Consider a fractional linear transformation

$$
L(z)=\frac{a z+b}{c z+d}, \text { with } a, b, c, d \in \mathbb{C}
$$

(a) Show that L is a one-to-one map if and only if $a d-b c \neq 0$.
(b) Extend L to a map from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$, by $L\left(-\frac{d}{c}\right)=\infty$ and $L(\infty)=\frac{a}{c}$. Show that if $a d-b c \neq 0$, the extension of L becomes a one-to-one and onto map from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.
2. Consider a fractional linear transformation

$$
L(z)=\frac{a z+b}{c z+d}, \text { with } a, b, c, d \in \mathbb{C} \text { and } a d-b c \neq 0
$$

(a) Show that if a, b, c, d are real numbers then L maps the real axis to the real axis.
(b) Conversely, show that if $L(z)$ maps the real axis to the real axis, then it can be written as $L(z)=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}$, with $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ real numbers and $a^{\prime} d^{\prime}-b^{\prime} c^{\prime}=1$.
Hint for (b): Consider two cases $a \neq 0$ and $a=0$. If $a \neq 0$, then dividing top and bottom by a, the map can be written as

$$
L(z)=\frac{z+\tilde{b}}{\tilde{c} z+\tilde{d}}
$$

Now prove that if $L(z)$ maps \mathbb{R} to \mathbb{R} then the coefficients $\tilde{b}, \tilde{c}, \tilde{d}$ are real. The determinant 1 condition can be satisfied by one more re-normalization of the coefficients.
In the case $a=0$, note that b and c must be non-zero, so a similar (and easier) argument can be done.

