1. In a triangle of sides $2,3,4$, find the area A, the inradius r, the circumradius R of the triangle. Find also the angles of the triangle (you can leave your answer as an inverse trig function).
2. If P, Q, R denote the tangency points of the incircle with the sides $B C, C A, A B$ of a triangle $\triangle A B C$ and we denote $x=|A R|=|A Q|, y=|B P|=|B R|, z=|C Q|=|C P|$, show that $x=p-a, y=p-b$ and $z=p-c$, where p is the semiperimeter $p=\frac{1}{2}(a+b+c)$.
3. Show that the area of a trapezoid is given by the formula $\frac{1}{2} h(a+b)$, where h is the altitude of the trapezoid (the distance between the parallel sides) and a and b are the lengths of the two basis.
4. (a) Find a formula in terms of n for the ratio (Perimeter) ${ }^{2} /$ Area for a regular n-gon. (A regular n-gon is a polygon with n sides, with all sides congruent and all angles congruent.)
(b) Show that when $n \rightarrow \infty$ the ratio in part (a) converges to 4π (which is the ratio corresponding to the circle).
(c) Give a proof of Zenodorus' theorem that if a circle and regular polygon have the same perimeter, the circle has the greater area. (You are suppose to use your calculations in part (a), not the isoperimetric inequality.)
5. (a) Prove that in a triangle an external angle bisector is parallel to the third side if and only if the triangle is isosceles.
(b) Prove that the external bisector of an angle of a triangle (not isosceles) divides the opposite side (externally) into two segments proportional to the sides of the triangle adjacent to the angle.
Concretely, in a triangle $\triangle A B C$, if P is the point of intersection of the external angle bisector of the angle A with the side $B C$, show that

$$
\frac{|P B|}{|P C|}=\frac{|A B|}{|A C|}
$$

This is sometimes called the external angle bisector theorem. (It is what you were supposed to come up in Pb .3 of Set 1.)
6. Prove: The internal bisectors of two angles of a triangle and the external bisector of the third angle intersect the opposite sides of the triangle in three collinear points.
7. In an arbitrary triangle $A B C$, let D be the midpoint of $B C$, let E be an arbitrary point on the segment $A C$ and F be the point on $A B$ such that $E F \| B C$. Show that the lines $A D, B E$ and $C F$ are concurrent.

