1. Suppose \mathcal{C} is a circle and that L_{1} is a secant line that intersects the circle at A and B. Let L_{2} be the tangent line to the circle at A. Show that the angles between L_{1} and L_{2} at A are each equal to $1 / 2$ of the measure of the corresponding arc determined by the chord $A B$ on the circle (there are two such arcs whose sum of measures is 360°).
2. Suppose \mathcal{C} is a circle, that L_{1} and L_{2} are two lines secants to the circle and assume that $L_{1} \cap L_{2}=\{P\}$ where P is a point in the interior of the circle. Find and prove formulae for the angles at P between L_{1} and L_{2} in terms of the arcs determined on the circle by the 4 points of intersection with the two secants.
3. Suppose \mathcal{C} is a circle and assume that A and B are points on the circle. Denote by L_{1} and L_{2} the tangent lines to the circle at A, respectively B. Find and prove a formula for the (acute) angle between L_{1} and L_{2} in terms of the arcs determined by the points A and B on the circle.
