1. Prove the converses of the internal and the external angle bisector theorems. Namely, assume that in the triangle $\triangle A B C, D$ is a point on $B C$ so that

$$
\frac{|D B|}{|D C|}=\frac{|A B|}{|A C|} .
$$

Show that
(a) if D is in the interior of the segment $\overline{B C}$, then $D A$ is the interior angle bisector of the angle at A;
(b) if D is outside the segment $\overline{B C}$, then $D A$ is the exterior angle bisector of the angle at A.
2. Given a triangle $\triangle A B C$ you can construct three Apollonius circles, one associated to each vertex, as follows: Given vertex A, let's say, consider the internal and the external angle bisectors of the angle A and let D_{1} and D_{2} be their intersections with the line $B C$, respectively. The circle with diameter $D_{1} D_{2}$ is the Apollonius circle associated to vertex A. (It is easy to see that this is the Apollonius circle corresponding to the fixed points B and C and ratio $k=\frac{|A B|}{|A C|}$.)
(a) Show that the three Apollonius circles associated to a triangle $\triangle A B C$ are concurrent in two points.
(b) In the case of an isosceles triangle, what can you say about the Apollonius circles associated to the triangle?
3. Suppose \mathcal{C} is a circle and let P be a point inside the circle \mathcal{C}. Consider two lines through P that intersect the circle in A_{1}, B_{1} and A_{2}, B_{2}, respectively.

Show that $\left|P A_{1}\right| \cdot\left|P B_{1}\right|=\left|P A_{2}\right| \cdot\left|P B_{2}\right|$.

