1. If \mathcal{C} and \mathcal{D} are circles with respective centers C and D which intersect at a point R, show that the tangents at R to the two circles are perpendicular if and only if each tangent passes through the center of the other circle.

Note: This gives a necessary and sufficient condition for two circles to be orthogonal.
2. Given a circle \mathcal{C} and P, P^{\prime} two distinct points inverse to each other with respect to \mathcal{C}, suppose that \mathcal{D} is a circle that contains P and P^{\prime}. Show that the circle \mathcal{D} is orthogonal to \mathcal{C}.
3. This is a converse of the statement 2. If \mathcal{C} and \mathcal{D} are two circles which intersect orthogonally, then any diameter of \mathcal{C} cuts \mathcal{D} in a pair of points which are inverse with respect to \mathcal{C}.

