1. For each of the following, find a linear fractional transformation that maps:
(a) $0,1, i$ onto $\frac{1}{2}, \frac{2}{3}, \frac{3+i}{6}$ respectively;
(b) $\infty, i, 1$ onto $-1,0, i$ respectively;
(c) $-1, \infty, i$ onto $\infty, i, 1$ respectively;
(d) the real axis onto the unit circle (Is the transformation unique in this case?);
(e) the unit circle $|z|=1$ onto the circle $|z-i|=1$. (Is the transformation unique in this case?)
2. Related to Pb . 1, part (i), is there a linear fractional transformation that maps the unit circle $|z|=1$ onto the circle $|z-i|=1$ leaving the points of intersection of these two circles fixed?
3. Find the fixed points of $w=\frac{z-1}{z+1}$. What is the image of the disk $|z|<1$?.
4. Show that the composition of two circle inversions is a linear fractional transformation.
