1. For each of the following, find a linear fractional transformation that maps:

- (a) 0, 1, i onto $\frac{1}{2}, \frac{2}{3}, \frac{3+i}{6}$ respectively;
- (b) ∞ , *i*, 1 onto -1, 0, i respectively;
- (c) $-1, \infty, i$ onto $\infty, i, 1$ respectively;
- (d) the real axis onto the unit circle (Is the transformation unique in this case?);
- (e) the unit circle |z| = 1 onto the circle |z i| = 1. (Is the transformation unique in this case?)

2. Related to Pb. 1, part (i), is there a linear fractional transformation that maps the unit circle |z| = 1 onto the circle |z - i| = 1 leaving the points of intersection of these two circles fixed?

3. Find the fixed points of $w = \frac{z-1}{z+1}$. What is the image of the disk |z| < 1?.

4. Show that the composition of two circle inversions is a linear fractional transformation.