\qquad

Exam 2

MAP 2302: Summer B 2018

1. (15 pts) These are True/False questions. Answer and give a brief justification (5 pts each).
(a) The UC method can be applied to find a particular solution of $y^{\prime \prime}+y=e^{x} \ln x \quad$ True False

Justification:

(b) If $y_{1}(x)=e^{x}$ and $y_{2}(x)=e^{2 x}$ are solutions of a linear, homogeneous 2nd order ODE with constant coefficients $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$, then $y_{3}(x)=e^{x} \cdot e^{2 x}=e^{3 x}$ is also a solution. True False

Justification:
(c) The IVP problem $y^{\prime \prime}+x y^{\prime}+x^{2} y=0, y(1)=0, y^{\prime}(0)=0$, has a unique solution defined on $(-\infty,+\infty)$.

True False

Justification:

2. (15 pts) Find the general solution of $y^{(4)}+3 y^{(2)}-4 y=0$.
3. (12 pts) Using the UC method, write the form of a particular solution of $y^{\prime \prime}-y=t e^{t}$. You DO NOT have to spend time to find the coefficients.
4. $(15 \mathrm{pts})$ Find the general solution of the Cauchy-Euler ODE for $x>0: x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0$.
5. (18 pts) A spring is such that a force of 10 newtons would stretch it 5 cm . The spring hangs vertically and a $2-\mathrm{kg}$ mass is attached to it. After this $2-\mathrm{kg}$ mass comes to rest in its equilibrium position, it is pulled down 3 cm below this position and released at $t=0$ (with zero initial velocity). The medium offers resistance equal to $4 x^{\prime}$, where x^{\prime} is the velocity in centimeters per second.
(a) (6 pts) Set up as an IVP problem.
(b) (10 pts) Solve the IVP to find the displacement function $x(t)$.
(c) (2 pts) Is the motion underdamped (or oscillatory damped), critically damped, or overdamped?
6. (15 pts) Use the VP method to find the general solution of the differential equation: $y^{\prime \prime}+y=\sec ^{3} x$. Hint: You can use the formulas given in Problem 7(B) (see next page).
7. Choose ONE. Note the different point values.
(A) (10 pts) State and prove a theorem on how to get a particular solution of

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=b_{1}(x)+b_{2}(x),
$$

if you know one particular solution $y_{1}(x)$ of $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=b_{1}(x)$ and another particular solution $y_{2}(x)$ of $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=b_{2}(x)$.
(B) (15 pts) Derive the formulas for $c_{1}^{\prime}(x)$ and $c_{2}^{\prime}(x)$ from the VP method.

That is, show that if y_{1}, y_{2} are linearly independent solutions of $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$, then a particular solution for $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=b(x)$ is given by

$$
\begin{gathered}
y_{p}(x)=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x) \text {, where } \\
c_{1}^{\prime}(x)=-\frac{b(x) y_{2}(x)}{a_{2}(x) w(x)}, c_{2}^{\prime}(x)=\frac{b(x) y_{1}(x)}{a_{2}(x) w(x)} \text { and } w(x) \text { denotes the Wronskian of } y_{1}, y_{2} .
\end{gathered}
$$

(C) (20 pts) Find the general solution of $\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$.

