1. Find the general power series solution of the differential equation in powers of x (that is, about $x_{0}=0$) $2 y^{\prime \prime}+x y^{\prime}+y=0$
2. Find the inverse Laplace transform $L^{-1}\left(\frac{1}{s\left(s^{2}+4\right)}\right)$ in two different ways:
(a) using partial fractions (and the table)
(b) using convolution (and the table).
3. Use Laplace transform to solve the following system of linear ODEs

$$
\left\{\begin{array}{l}
x_{1}^{\prime \prime}+5 x_{1}-2 x_{2}=0 \\
x_{2}^{\prime \prime}-2 x_{1}+2 x_{2}=0
\end{array}\right.
$$

with initial conditions $x_{1}(0)=-1, x_{1}^{\prime}(0)=0, x_{2}(0)=2, x_{2}^{\prime}(0)=0$.
4. Given that a is a positive constant, use the definition to find the Laplace transform of the step-function

$$
u_{a}(t)= \begin{cases}0, & t<a \\ 1, & t>a\end{cases}
$$

Note: With this you justified formula (15) from the Laplace transform table (on page 500 textbook).

