Name: \qquad
Exam 2 Differential Geometry

Panther ID: \qquad

This is a take home exam. Due date: Tuesday, April 9. You are allowed to collaborate, search literature, but you should write your own versions of the proofs.

1. (20 pts) (a) Show that on any compact 2 -surface $S \subset \mathbf{R}^{3}$ there is a point p where the Gauss curvature is positive. (Hint: You can use without proof results that we proved in class, but state clearly what you are using.)
(b) As a consequence of part (a), show that a minimal 2-surface $S \subset \mathbf{R}^{3}$ cannot be compact. (Recall that S is minimal if the mean curvature H is identically 0 .)
2. (30 pts) (Exercises 3.17, 3.18 from p. 27 handout.)
(a) Let α be a unit-speed curve which lies on a sphere of center p and radius R. Show that, if $\tau \neq 0$, then

$$
\alpha(s)-p=-\frac{1}{\kappa} N-\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau} B \text { and } R^{2}=\left(\frac{1}{\kappa}\right)^{2}+\left(\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau}\right)^{2} .
$$

(Notations are the usual ones.)
(b) Conversely, show that if $\left(\frac{1}{\kappa}\right)^{\prime} \neq 0$ and $\left(\frac{1}{\kappa}\right)^{2}+\left(\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau}\right)^{2}$ is a constant, then a (unit speed) curve α lies on a sphere.
3. (25 pts) Compute the Gaussian and the mean curvature of the helicoid $\Phi(t, \theta)=(t \cos \theta, t \sin \theta, \theta)$. In particular, observe that the helicoid is a minimal surface.
4. (35 pts) Problem 14.20 textbook + the following part (c):
(c) Show that a flat $(K=0)$ surface of revolution is part of a circular cone or cylinder.

Good luck!

