Problems for Fermat's and Euler's Theorems

1. If p is prime, then, for all $a, a^{p} \equiv a(\bmod p)$.
2. What can you say about n and m if:
(a) $n^{96} \equiv m(\bmod 17)$?
(b) $n^{9} \equiv m(\bmod 19)$?
3. (a) Show: if $7 \nmid n$, then $7 \mid\left(n^{12}-1\right)$.
(b) Show: $n^{13}-n$ is divisible by $2,3,5,7,13$, for all natural numbers n.
4. (a) Find the remainder of the sum $1+a+a^{2}+a^{3}+\ldots+a^{9} \bmod 11$, for each number $a<11$. Can you explain the outcome?
(b) Make a theorem generalizing the statement from part (a) and prove your theorem.
5. Let $N=\overline{111 \ldots 11}$, where N is a number in base 10 , made up of $p 1$'s and where p is a prime other than 3 . Show that $N \equiv 1(\bmod p)$.

6*. Let a, b be natural numbers such that $\operatorname{gcd}(a, b)=1$. Show that there exist numbers $m, n \in \mathbf{N}^{*}$ such that

$$
a^{m}+b^{n} \equiv 1(\bmod a b) .
$$

