Homework - Due Tuesday, Nov. 16

The Möbius function, $\mu(n)$, is defined by:

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 ; \\ (-1)^{r} & \text { if } n=p_{1} p_{2} \ldots p_{r}, \text { where } p_{i} \text { are distinct primes; } \\ 0 & \text { otherwise. }\end{cases}
$$

1. (10 pts) Show that the Möbius function $\mu(n)$ is multiplicative.
2. (10 pts) Show that the function $F(n)$, obtained from the Möbius function by $F(n)=\sum_{d \mid n} \mu(d)$, satisfies

$$
F(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

(Feel free to use the result of the exercise 19.2 (b) from the textbook.)

