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The odd-dimensional Goldberg conjecture
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An odd-dimensional version of the Goldberg conjecture was formulated and proved in [5], by using an orbifold
analogue of Sekigawa’s arguments in [8], and an approximation argument of K-contact structures with quasi-
regular ones. We provide here another proof of this result.
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1 Introduction

The celebrated Goldberg conjecture states that every compact almost Kähler Einstein manifold M is actually
Kähler–Einstein. This conjecture was confirmed by Sekigawa [8] in the case when M has nonnegative scalar
curvature. The odd-dimensional analogues of Kähler manifolds are Sasakian manifolds, and those of almost
Kähler manifolds are K-contact manifolds. In [5], Boyer and Galicki proved the following odd-dimensional
analogue of Goldberg’s conjecture.

Theorem 1.1 ([5]) Any compact Einstein K-contact manifold (M, g, ξ) is Sasakian.

Their proof goes roughly as follows. First, an Einstein K-contact manifold has prescribed (positive) Einstein
constant. If the K-contact structure is quasi-regular (i.e., the orbits of the Reeb vector field ξ are closed), then the
quotient of M by the flow of ξ is an almost Kähler orbifold [9] which is Einstein with positive scalar curvature by
the O’Neill formulas. One then applies Sekigawa’s proof to obtain that the almost Kähler structure is integrable,
which in turn means that the K-contact structure is Sasakian. If the K-contact structure is not quasi-regular,
the space of orbits of ξ is not an orbifold (and may not be even a tractable topological space). To overcome this
difficulty, the authors of [5] provide a beautiful argument showing that the Reeb vector field ξ can be approximated
(in a suitable sense) by a sequence of quasi-regular Reeb vector fields ξi which define K-contact structures on a
sequence of (no longer Einstein) metrics gi approaching g. Then for the sequence of orbifolds thus obtained, one
can use “approximative” Sekigawa formulas and eventually show that the K-contact structure is integrable.

The aim of this note is to give another proof of Theorem 1.1 and to study further possible extensions. Instead
of the quotient of M by the Reeb flow, we consider another almost Kähler manifold naturally associated to
M , namely the cone over M . It is well-known that the cone is a smooth non-compact Ricci-flat almost Kähler
manifold which is Kähler if and only if M is Sasakian. It therefore suffices to prove the integrability of the almost
Kähler cone structure. It would seem to be difficult to apply directly Sekigawa’s arguments in this situation
because of the non-compactness of the cone. But this can be overcome easily: we first apply a point-wise version
of Sekigawa’s formula on the cone manifold, and then integrate it on the level sets of the radial function (which
are compact manifolds).
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The use of this approach tempted us to extend the conjecture to the more general case of contact metric
structures, when the metric is no longer bundle-like. Indeed, one could argue that the analogue of almost Kähler
manifolds in odd dimensions are the contact metric structures, since they correspond to the level sets of the radial
function of almost Kähler cone metrics. The contact analogue of the Goldberg conjecture would then assert
that any compact Einstein contact metric manifold is Sasakian–Einstein. This statement turns out to be false
in general, as it follows from an example of D. Blair on the flat 3-torus, which we recall in the last section.
Still, the counterexample does not generalize to higher dimensions, so the problem seems to be worth further
investigation. We make a step in this direction; in the particular case when the Einstein metric admits already a
compatible Sasakian structure, we use Theorem 1.1 to show that any other compatible contact metric structure is
necessarily Sasakian.

Theorem 1.2 Let (M, g, ξ) be a compact Sasakian–Einstein manifold of dimension 2n +1. Then any contact
metric structure (ξ′, g) on (M, g) is Sasakian. Moreover, if ξ′ is different from ±ξ, then the following two cases
occur:

(a) (M, g) admits a 3-Sasakian structure, and ξ and ξ′ belong to the underlying S2-family of Sasakian
structures.

(b) (M, g) is covered by the round sphere S2n+1.

Note that the cone construction identifies the set of all Sasakian structures on the round sphere S2n+1 with the
homogeneous space SO(2n + 2)/U(n + 1).

2 Preliminaries

Let (M, g) be a Riemannian manifold. We define the cone M := M×R
∗
+ endowed with the metric ḡ = r2g+dr2,

and denote by ∇ the covariant derivative of ḡ. It is well-known that the cone is a non-complete Riemannian
manifold which can be completed at r = 0 if and only if M is a round sphere.

Every vector field X on M induces in a canonical way a vector field (X, 0) on M , which (with a slight abuse
of notation) will still be denoted by X . Similarly, we denote by the same symbol the forms on M and their
pull-backs to M (with respect to the projection on the first factor). Let us denote by ∂r the vector field ∂

∂r on
M . The following formulas relate the covariant derivatives ∇ and ∇, and are immediate consequences of the
definitions.

∇∂r∂r = 0 ; ∇X∂r = ∇∂rX =
1
r

X ; ∇XY = ∇XY − rg(X, Y )∂r . (2.1)

Using this, we obtain for every vector X and a p-form ω on M

∇∂rω = −p

r
ω and ∇Xω = ∇Xω − 1

r
dr ∧ X� ω , (2.2)

∇∂rdr = 0 and ∇Xdr = rX� . (2.3)

The curvature tensors R and R of M and M , respectively, are related by

R(∂r, ·) = 0 and R(X, Y )Z = R(X, Y )Z + g(X, Z)Y − g(Y, Z)X . (2.4)

Definition 2.1 A contact metric structure on a Riemannian manifold M is a unit length vector field ξ such
that the 1-form η := 〈ξ, ·〉 and the endomorphism ϕ associated to 1

2 dη are interrelated by

ϕ2 = −1 + η ⊗ ξ . (2.5)

Since ϕ2(ξ) = 0, we get |ϕ(ξ)|2 = −〈ξ, ϕ2(ξ)〉 = 0, so ϕ(ξ) = 0. In other words, ϕ defines a complex structure
on the distribution orthogonal to ξ.

A contact metric structure (M, g, ξ, ϕ, η) is called K-contact if ξ is Killing. If, moreover,

∇X∇ξ = ξ ∧ X for all X ∈ TM (2.6)

then (M, g, ξ, ϕ, η) is called Sasakian.
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Given a contact metric manifold (M, g, ξ, ϕ, η), we construct a 2-form Ω on M , defined by

Ω = rdr ∧ η +
r2

2
dη . (2.7)

This 2-form is clearly compatible with ḡ, and therefore defines an almost complex structure J on M by Ω(·, ·) =
ḡ(J ·, ·). Moreover, Ω is obviously closed, meaning that (M, J) is almost Kähler. It is well-known that Ω is
parallel (i.e., (M, J) is Kähler) if and only if the contact structure ξ is Sasakian.

We close this section with the following

Lemma 2.2 (i) The codifferentials on M and M are related by

δM
(
rkσ

)
= rk−2δMσ for all σ ∈ Λ1M . (2.8)

(ii) The Laplacians on M and M are related by

∆M
(
rkf

)
= rk−2

(
∆Mf − k(2n + k)f

)
for all f ∈ C∞(M) . (2.9)

P r o o f. (i) If (ei) denotes a local orthonormal base on M , we have

δM
(
rkσ

)
=

∑
i

(
−ei

r

(
rkσ

(ei

r

))
+ rkσ

(
∇ ei

r

ei

r

))
− ∂r

(
rkσ(∂r)

)
+ rkσ(∇∂r∂r)

=
∑

i

−rk−2ei(σ(ei)) + rk−2σ(∇eiei) − r∂r

= rk−2δMσ .

(ii) Similarly,

∆M
(
rkf

)
=

∑
i

(
−ei

r

(ei

r

(
rkf

))
+ ∇ ei

r

ei

r

(
rkf

)) − ∂r

(
∂r

(
rkf

))

=
∑

i

(
−rk−2ei(ei(f)) +

1
r2

(∇eiei − r∂r)
(
rkf

)) − k(k − 1)rk−2f

= rk−2∆Mf − k(2n + 1)rk−2f − k(k − 1)rk−2f

= rk−2
(
∆Mf − k(2n + k)f

)
.

3 Proof of Theorem 1.1

Let
(
M2n+1, g, ξ

)
be a compact K-contact Einstein manifold. By a result of Blair ([2, Theorem 7.1]), a contact

metric manifold is K-contact if and only if Ric(ξ, ξ) = 2n; thus, the Einstein constant in our case must be 2n.
Consider now the cone M , which is an almost Kähler manifold. We use the following Weitzenböck-type

formula, taken from [1, Proposition 2.1].

Proposition 3.1 For any almost Kähler manifold (M, ḡ, J, Ω) with covariant derivative denoted by ∇ and
curvature tensor R, the following point-wise relation

∆(s∗ − s) = − 4δ
(
Jδ∇

(
JRic

′′))
+ 8δ(〈ρ̄∗,∇· Ω〉) + 2

∣∣Ric′′
∣∣2

− 8
∣∣R′′∣∣2 − |∇∗∇Ω|2 − |φ|2 + 4〈ρ, φ〉 − 4〈ρ,∇∗∇Ω〉 ,

holds, where φ(X, Y ) = 〈∇JXΩ,∇Y Ω〉, s and s∗ are respectively the scalar and ∗-scalar curvature, Ric
′′

is
the J-anti-invariant part of the Ricci tensor Ric, ρ is the (1, 1)-form associated to the J-invariant part of Ric,
ρ̄∗ := R(Ω) and R

′′
denotes a certain component of the curvature tensor.
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In our situation, since M2n+1 is Einstein with constant 2n, (2.4) shows that M is Ricci-flat. So the formula
above becomes

∆Ms∗ − 8δM (〈ρ̄∗,∇· Ω〉) = −8
∣∣R′′∣∣2 − |∇∗∇Ω|2 − |φ|2 . (3.1)

We now use Lemma 2.2 in order to express the left-hand side of this equality in terms of the codifferential and
Laplacian on M . From (2.4) we get ρ̄∗(X, ∂r) = 0 and ρ̄∗(X, Y ) = ḡ

(
R

(
ei

r , J ei

r

)
X, Y

)
= ρ∗(X, Y ), for some

2-form ρ∗ on M . Taking the scalar product with Ω yields

s∗ =
1
r2

f (3.2)

for some function f on M . Note that f is everywhere nonnegative on M since s∗ = s∗ − s = |∇Ω|2 on M (see
e.g. [1, p. 777]).

Now, from (2.2), (2.3) and (2.7) we get ∇∂rΩ = 0 and ∇XΩ = r2ω + rdr ∧ τX for some 2-form ω and
1-form τX on M . Consequently, the 1-form 〈ρ̄∗,∇· Ω〉 on M is easily seen to be of the form

〈ρ̄∗,∇· Ω〉 =
1
r2

α (3.3)

for some 1-form α on M . Using (3.2), (3.3) and Lemma 2.2, the equality (3.1) becomes

1
r4

(
∆Mf + 2(2n− 2)f − 8δMα

)
= −8

∣∣R′′∣∣2 − |∇∗∇Ω|2 − |φ|2 . (3.4)

Integrating this last equation on each level set Mr := {r = constant} of M yields
∫

Mr

2(2n− 2)
r4

f + 8
∣∣R′′∣∣2 + |∇∗∇Ω|2 + |φ|2 = 0 .

In particular, since f ≥ 0, φ vanishes identically on M , hence |∇XΩ|2 = −φ(X, JX) = 0 for every X on M .
Thus M is Kähler, so M is Sasakian.

4 Proof of Theorem 1.2

Let (M, g, ξ) be a compact Sasakian–Einstein manifold and ξ′ be another g-compatible contact metric structure.
Since Ric = 2ng, it follows that (g, ξ′) is K-contact (see [2, Theorem 7.1]), hence Sasakian according to
Theorem 1.1. Since (M, g) is complete, by a result of Gallot [6], the cone (M, ḡ) over (M, g) is (locally)
de Rham irreducible unless it is flat (i.e., (M, g) is of positive constant curvature). Therefore, Theorem 1.2
follows from the following general observation.

Proposition 4.1 Suppose (M, g) is a Riemannian manifold whose cone is locally irreducible and which admits
two Sasakian structures (g, ξ) and (g, ξ′) with ξ 	= ±ξ′. Then (M, g) admits a 3-Sasakian structure and ξ and ξ′

belong to the underlying S2-family of Sasakian structures.

P r o o f. Let (M, ḡ) be the cone over (M, g). The Sasakian structures ξ and ξ′ give rise to two Kähler struc-
tures, J and J ′, on (M, ḡ) with J 	= ±J ′ (because ξ 	= ξ′ by assumption). It suffices to show that (M, ḡ)
must be hyperkähler and J and J ′ belong to the S2-family of compatible Kähler structures. The anti-commutator
Q = JJ ′ + J ′J of J and J ′ is symmetric and parallel with respect to ḡ; since (M, ḡ) is locally irreducible,
Q = λ Id for some real constant λ. Since J and J ′ are both ḡ orthogonal, the Cauchy–Schwartz inequality
implies |λ| ≤ 2; it is easy to see that equality is possible if only if J = ±J ′, a situation that we excluded.
Similarly, the commutator A = JJ ′ − JJ ′ of J and J ′ is parallel and skew-symmetric with respect to the metric
ḡ and by using the corresponding property of Q, it verifies A2 = (λ2 − 4) Id. It follows that I = 1√

4−λ2 A

defines a parallel, ḡ-compatible complex structure on (M, ḡ) which anti-commutes with both J and J ′; therefore
(ḡ, I, J, K = IJ) defines a hyperkähler structure. The equality JJ ′ + J ′J = λ Id also shows that J ′ belongs to
the S2-family of Kähler structures generated by (ḡ, I, J, K).
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5 An example and further comments

As explained in the introduction, it was tempting to ask the following question, slightly more general than The-
orem 1.1: Is every compact Einstein contact metric manifold Sasakian–Einstein? The answer is negative in
general, as the following simple example of D. Blair shows (see [2, p. 23, pp. 68–69 and pp. 52–53]).

Example 5.1 The 1-form η := cos t dx + sin t dy defines a (non-regular) contact metric structure on the flat
torus T 3 (where t, x and y are standard coordinates on T 3 of periods 2π), which is not K-contact (and hence not
Sasakian).

Note however that this is the only negative example to the above question in dimension 3. Indeed, in this
dimension, Blair and Sharma [4] proved that a contact metric manifold of constant curvature has either curvature
+1 and is Sasakian, or curvature 0 and is isometric to the above example. Note also that the example does not
directly generalize to higher dimensions, as Blair [3] also shows that there are no flat contact metric structures
in dimension ≥ 5. More generally, there is a theorem of Olszak [7] that in dimension ≥ 5 there are no contact
metric manifold of constant curvature, unless the curvature is +1 and the structure Sasakian. Hence, there are
reasons to still investigate the above question.
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