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Abstract

It is shown that the existence of amcompatible Einstein metric on a compact symplectic manifatt »)
imposes certain restrictions on the symplectic Chern numbers. Examples of symplectic manifolds which do not
satisfy these restrictions are given. The results offer partial support to a conjecture of Goldberg.
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1. Introduction

This note is motivated by the following still open conjecture of Goldberg:

Conjecture 1 [11]. On a compact symplectic manifold/?, ») any Einsteinw-compatible metric is
Kahler Einstein.
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A Riemannian metrig is said to be compatible with a symplectic foem or shortly,w-compatible
if there exists a-orthogonal almost complex structufesuch that

Such a triple(g, J, w) is called aralmost Kahler structure

Given a symplectic formv on a compact manifold/?, the space of almost Kahler metrics compatible
with o is well known to be infinite dimensional and contractible. The latter fact implies that the Chern
classesc, € H*(M,R) are independent of the choice of a compatible almost complex structure. As
o induces a non-trivial cohomology clags] € H>(M, R), we define numerical symplectic invariants,
which we callsymplectic Chern numbeiigy taking cup products of the Chern classewith appropriate
powers of[w]. The symplectic Chern numbe(s; v [w]"1)(M) and (c% Vv [w]"2)(M) will play an
important role in this note.

It is now well known that Kéhler metrics exist only very rarely on compact symplectic manifolds. In-
directly, the Goldberg conjecture predicts thatompatible Einstein metrics are even scarcer. Although
the conjecture is still wide open, this prediction can be confirmed in certain cases and our purpose is tc
bring further support to its validity.

First, let us mention that for compact 4-manifolds there are known topological obstructions to the
existence of Einstein metrics. For instance, the Hitchin—Thorpe inequaityB | < 2x (M) must hold,
whereo (M), x (M) are the signature and the Euler numbenst, respectively. Important refinements
of this inequality were proved by LeBryi4,15] using Seiberg—Witten theory. There are now known
many examples of compact symplectic manifolds which violate the Hitchin—Thorpe inequality or its
refinements and, hence, do not adarily Einstein metrics (compatible or not). This provides indirect
support to the 4-dimensional Goldberg conjecture. In higher dimensions there are no known topological
obstructions to the existence of Einstein metrics.

There are results directly supporting the Goldberg conjecture. Most notably, Sekigawa pr{@d in
that the conjecture is true provided that the scalar curvature is assumed to be non-negative. Other positiv
partial results have been obtained in dimension 4 under various additional curvature assuhxjéns
17,18] However these partial results do not provide obstructions to the existence of Einstein compatible
metrics, because of the Riemannian nature of the additional assumptions imposed.

It was observed ifi8], that Sekigawa’s result can be slightly improved by replacing the assumption
s > 0 with the weaker conditiotr; V [w]* 1) (M) > 0. As we need its proof later on, we incorporate this
remark as part of our main result. Furthermore, in dimension 4, Armstrong proved that integrability holds
even when one replaces the symplectic conditigv [w]) (M) > 0, with, the essentially topological one,
that the manifold admits a metric of everywhere positive scalar curvatur¢4(s€erollary 2.3.5].

The main goal of this note is to investigate the césev [w]" 1) (M) < 0. We prove that the ex-
istence of an Einsteim-compatible metric imposes certain inequalities between the symplectic Chern
numbers(c; V [o]""1) (M) and (c? v [w]"~2)(M), which are not satisfied by all symplectic manifolds.
The following theorem summarizes our main results:

Theorem 1. Let (M?", ) be a2n-dimensional compact symplectic manifold. Assume Mhaidmits an
w-compatible Einstein metrig.

A. If (c1 vV [w]" 1) (M) > 0, theng is a K&hler—Einstein metric. In particulag; € R, [w].
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B. If (c1 Vv [w]" 1) (M) < 0, then the following inequalities hald

(3 V []"2()) - ([ (M) < ka(ex v [w] (M), )
wherek; = 25/9if 2n > 6 andk, = 9/4 if 2n = 4;

(2 V [0l 2(M)) - ([o]" (M) > ko(c1 V [w]" (M), @)

wherek, = “=22 if 21 > 6 andk, = 2/3if 210 = 4.

Part A of Theorem lleads to first examples of compact symplectic manifolds of any dimen-
sion which do not admit compatible Einstein metrics. Indeed, any symplectic maritbleb) with
(c1V [w]"H (M) > 0, butc; ¢ R[w] will have this property. Concerning part B, the constants, are
most likely not optimal. In fact, | recently learned from Claude LeBf16] that in dimension 4 inequal-
ity (2) still holds fork, = 3/4. One would hope the result to be valid with &, as close to 1 as possible.
Nevertheless, even with the current constants, in Sedtime give examples of symplectic manifolds
which violate(1) or (2) and thus cannot admit compatible Einstein metrics.

2. Preliminaries

Assume for the beginning thatM?', g, J, w) is only an almost Hermitian manifold, i.e., that the
fundamental formw is not necessarily closed. We shall use the following notati®nis:the Levi-Civita
connection,R, Ric, s are respectively the curvature tensor, the Ricci tensor and the scalar curvature of
V,o= "j—, is the volume form and, ) is the pointwise inner product induced by the mefrion various
bundles of tensors and forms.

The almost complex structuteinduces an involution on the bundle of real 2-forms, by

APM S E(C, ) —> £, J) € A’M.

The £1-eigenspaces of this involution, which we denoteWM and [A%2M], are the bundles of
J-invariant, respectively -anti-invariant 2-forms. The notation is explained by the correspondence with
the usual type decomposition of complex 2-forndsinvariant 2-forms are nothing but real forms of
complex type(l, 1), while J-anti-invariant 2-forms are real parts of complex 2-forms of typg?)
(equivalently, of typ&2, 0)). The fundamental forrw is J-invariant and we denote bzy(l)’lM C A]lelM

the sub-bundle oprimitive real (1, 1)-forms, i.e.,J-invariant 2-forms which are point-wise orthogonal
to w. Thus we have

APM = A" @ [A%*M] = Ro @ AF*M) & [A%2M], (3)

and the components of a sectidr A2M with respect to this decomposition are

1
E=¢+¢"= ;(S,w)w+€é+€"-

Here and throughout the paper we use the supers¢idpid’” to denote respectively the-invariant and
J-anti-invariant components and the subscript O for the primitive part.
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For anyz € A2M, easy computations imply:

1
EAn' = ~ (€, 00" = (1= DIE 0)o, 4
—1
EANEAND" 2= — 2)![” - &, )% — |&)12 + |s”|2]a
== 0)?— &P +£"P]o. ()

From now on we assume thét, J, ) is an almost Kahler structure, i.e., thatis closed. It is well
known that for an almost Kahler structuféy is identified with the Nijenhuis tense¥ of J by (cf., e.g.,
[13]):

1
SinceN(J-,-)=N(-, J-) =—JN(, ), the identification(6) implies that for any tangent vectoks Y, Z
(Vxo)(JY,JZ) = =(Vxw) (Y, Z), (7)
(Vixo)(JY, Z) = —(Vxw)(¥, Z). (8)

Relation(8) is sometimes called thguasi-Kahler conditionThe trace inX, Y of (8) leads to the (again
well-known) fact that is also co-closed and hence harmonic with respegt to
The standard Weitzenbock formula for 2-forms

A& — V*VE = [Ric(-, -) — Ric(-, )] — 2R (&),
specialized t& = w, gives

%V*Va) = R(w) — %[Ric(]-, ) —Ric(, J)] = ps — p. 9)

Formula(9) is a measure of the difference of two types of Ricci forms. For an arbitrary almost Kéhler
structure the Ricci tensor is in general netnvariant, but taking it/ -invariant part Ri¢ we can define
theRicci form p(-, ) = Ric'(J-, -). The 2-form defined by, = R(w) is called thex-Ricci form this is

in general not/-invariant. In fact, it follows from(9) that p, = %(V*Vw)”. As for the J-invariant part

of (9), taking the covariant derivativéy, of the relation(7) and then taking the trace #, X, we obtain
(V*Vw) = ¢, wherey is the semi-positive 2-form given by

2n
YY) =) (Ve NIX, (Ve )Y).
i=1
Here and throughoufe; };—1 2, denotes an orthonormal basis with respecgtd\ J-invariant 2-form
£ € Ag"M is calledsemi-positivef £(X, JX) >0,VX € TM.
The inner product witlw of the relation(9) yields the difference of the two types of scalar curvatures:

1
¥ —s=|Vo|*= E|VJ|2, (10)

wheres* = 2(R(w), w), is the so-calle&-scalar curvature
Unlike the Kahler case, the Levi-Civita connection cannot be used directly to provide representatives
for the Chern classes. Instead, one uses the so calléermitianor first canonicalconnection (see, e.g.,
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[10]), defined by:
~ 1
VxY =VyxY — EJ(VXJ)(Y)-

If R denotes the curvature tensor\of then
1 2n
pXY) =3 Z(Rx,yei, Jep)

is a closed 2-form which is a deRham representativeraf 2n H?(M,R). One easily finds the explicit
relation between the curvature tens@&and R, of V and V. We will only need the relationship of the
Ricci forms:

.01
p=p"~3¢. (11)

whereg¢ is the J-invariant, semi-positive 2-form given (X, Y) = (V,xw, Vyw).
Hence, by4), (5), (10) and (11)ve have

4 (clv[w]"_l)(M)zfg(s*+s)a =/<s+%|Vm|2>o, (12)
M M

(n—1)!

47?2, o (" +5)?
Vel )(M)_/[ 16
M

The formula(12)is due to Blaif 7], who first noted that the integrg], (s* +s)o is a symplectic invariant.
We let the reader observe that formu{&8) and (13Yyeduce to the well known ones in the Kéhler case.
We close this section with the following classical result of Apte about the Chern nurifevs

[0"2])(M) and(c1 V [0"~1])(M) in the K&hler case:

/

2
+ |p:;|2] 0. (13)

Proposition 1 [3]. Let M?" be a compact manifold and letbe a symplectic form o which admits a
compatible Kéhler metric. Then

(2 V[ 2)(M) - ([o]") (M) < ((c1V [0 Y) (M), (14)
with equality iffc; € Rw].

To sketch a proof, slightly different than the original ond3jf (see alsq19]), note that for a Kéhler
manifold the decompositio(B) descends to cohomology. In view (8), the bilinear formb(c, d) =
(c vd Vv [w]"?) (M) has Lorenz signaturét, —, ..., —) when restricted tHy" x Hi', whereHy"
denotes the subset BIP(M, R) consisting of cohomology classes represented by real harmonic 2-forms
of type (1, 1). This fact is part of the so-called Hodge—Riemann bilinear relationg{2e@. 123). For
anyc e Hﬂlg’l, we then have the following “opposite” Cauchy—Schwarz inequality:

bic, ¢) - b([w], [0]) < (b(c, [@]))%,

with equality iff ¢ € R[w]. It is well known that for a K&hler manifold the first Chern clagselongs
toHg".
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The proposition is no longer true in the non-Kahler case. One can find examples of symplectic forms
which do not satisfy the conclusion of tiroposition 1 and hence do not admit compatible Kahler
metrics (se¢9] andProposition delow).

3. Proof of Theorem 1

We start by recalling the remarkable integral formula of Sekigawa, which is valid on an arbitrary
compact almost Kahler manifold. The original proof of this formi@2@] is based on Chern—\Weil theory.
An alternative approach, based on Weitzenbock formulae, was descrif#d in

Proposition 2 [20]. For any compact almost Kahler manifold/?", g, J, o), the following integral for-
mula holds

1 PN/ Y 4 1 1
0= /[;Rnd 12— 1pl? = 2lW" 1>+ (p, ¢ — ¥) — Zw- Z|¢|2]a. (15)

M

The notations are those from Sectidgnwe should add thaW” is a certain component of the Weyl
part of the curvature (for more details §84). For our purposes here, all that matters is {fiat|? is a
non-negative quantity.

According to(3),

s |Vo|? |Vo|?
p=—w+ po, ¢ =  + oo, Y=  + Yo,
2n 2n
hence(15) becomes

1 - 1 "
o=/[§|R'C 1% = 1017 = 2IW"1” + (po, o — Yro)
M

s 5 1 1
— Vol — = |Vol* — Z|yol2 — Zl¢ol? |o. 16
4nl o| 16n| o| 4Ilﬁol 4I¢o| o (16)

In the Einstein case this implies

/(—s|Va)|2)cr > i—i/ Voo
M

M

and concludes the proof of Sekigawa’s theorem that compact almost Kéhler Einstein manifolds with
s > 0 are necessarily Kahler Einstdi20]. Making no assumption on the sign of the (constant) scalar
curvature and using Schwarz inequality, one obtains

5 2
—sVOI(M)/|Vw|20 > Z</|Vw|2cr> .
M M

Assuming now that the manifold i®t Kéhler, this leads to

5
—svol(M) > Z/|Va)|20,
M
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and, further, using Blair’s formulél?2), to
(n—1!
4

(c1 Vo] ) (M) > svol(M) > 5(c1 Vw]" ) (M). (17)

In particular,(c1 v [w]""1) (M) < 0, hence part A oTheorem Ifollows by contra-position.

The constant B3 in (17) can be lowered in the 4-dimensional case. In this dimension, the bundle of
2-forms also decomposes’M = A*M @ A~M, into the sub-bundles of self-dual and anti-self-dual
2-forms. This is related to the type decompositi@hby

ATM =Ro @ [A°?M], A~M = A5"M.

One then immediately concludes th&*Vw)” must be a multiple ofv. Also, using(8) and the fact that
the sub-bundl§A%2M] has dimension 2, it follows that the symmetric 2-tenSar, V.w) has a double

. . 2 . . .
eigenvalue 0 and a double eigenvalii-. Hence, in dimension 4 we have

1
Yo=0, |pol®>= §|Vw|4. (18)

Using these in(16) and following the path described above, we obtain that a 4-dimensional Einstein
strictly almost K&hler manifold satisfies

(c1V[@])(M) > is vol(M) > 3(c1 Vv [])(M). (19)

Part B of Theorem JJS a consequence of the following proposition, which may be of interest in its
own.

Proposition 3. Let (M?", g, J, w) be a compact almost Kahler manifold. Then the following lower esti-
mates of the.2-norm of the Ricci tensor hoid

2 n—1 2
/ Riofs > " 1),<”(cl Ly —(n—l)(c%v[w]“)W)), (20)
f IRicl’c > 1),( V[w]"?)(M). (21)

Equality holds in(20)if and only if (g, J, ®) is K&hler with constant scalar curvature and equality holds
in (21)if and only if (g, J, w) is K&hler Einstein.

Proof. Note first that using9), we have

1
o, =|p|2—<p,¢>+<p,w>+z|w—¢|2.

With this, Sekigawa’s formulél5) can also be written as

2
]a. (22)

1 1 1
0= _R'C2_2 me2 _ = A2 r_ =
/[2' IC| W] 2<¢,¢) [0 1™ — | Py 2¢>

M
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Using (22) to successively substitute terms(it3), we get the following alternative expressions for the
symplectic Chern numbet? v [w]"~2)(M):

4r? F+5)? 1 1
(nfaﬂﬁVM$QXM%:f[“:;)+amﬂ—§mmﬁ+awW?+?w¢@m (23)
4 2
(n iTZ)‘ (Ci v [w]n—Z) (M)

2

_ 2\ (s*+s)?% 1 _ 1
= [[(2-2) 8+ 32| (- 30),
M

Since bothp andy are semi-positive 2-forms, relatio(@3) and (24)ymply immediately the following
inequalities:

2 * 2
(n47_T oy (C% \% [a)]niz) (M) = /'|:(s ]—_::) — %|Ric|2} o, (25)

47-[2 D n_2 2 (S*—}—S)z 1 5 / 1
Vel )(M></[(l—;) TR —2‘(p*—§¢)o
M

The estimat€20) follows from (25), using(12) and Schwarz inequality. The estim#g4) follows from
(26) —(1—2/n) (25).

For the equality statement, note first that equality hold&B) or (26) if and only if the structure
is Kahler. Indeed, assuming equality in either case, we must {gaug) = 0. Since bothp and v are
semi-positive, it follows that for an € TM, ¢(X,JX) =0 ory(X,JX)=0. But¢(X,JX) =0
implies, by the definition ofp, that Vyw = 0. The conditiony (X, JX) = 0 leads to(Vyw)(X, Z) =
—(Vyw)(Z,X) =0, foranyY, Z € T M. But, sincew is closed, this also leads ¥yw = 0. Now further
note that for(20) we also used Schwarz inequality, hence in the equality case we must kawenst,
while for (21) we neglected the last term (#6), which in the equality case implies Rie= 0. O

1
—2[W")? - > ¢>>]a. (24)

2} . (26)

Remark. Note that the right-hand side ¢20) is greater or smaller than the right-hand side(2f)
depending on whether the inequalii4) holds or not. In the almost Kahler case either situation is
possible as it will become clear in Sectidiisee alsd9]).

Proof of Theorem 1, B. In case of dimension/2> 6, both inequalitie$l) and (2)are now immediate.
Indeed, assuming thég, J, ») is a non-Kahler, Einstein, almost Kéhler structure, by Sekigawa’s theorem
and Theorem 1 part A, boths and (c; v [w]" ) (M) are negative numbers. The second par(iaf)
squared implies then
—1)NH2
%SZ(VOI(M))Z < 2—95 (e V [l 1) (M),

Now combine this inequality with the (strict) inequaliti€20) and (21)written in the Einstein case.
Inequalities(1) and (2)follow, with k; = 25/9 andk, = “~22 as stated.

With the same arguments as above, the better conistan®/4 for inequality(1) in the 4-dimensional
case follows from(20) combined with(19).
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To obtain the constaitt = 2/3 for inequality(2) in dimension 4, slightly more effort is required. With
the Einstein assumption and taking into accdd), relation(23) becomes

* 2 2 \V/ 4

Using (10), the above can be written as

1 1
Am2A(M) = / |:4_8(S* +5)° 4 4@ ="+ 20l + 2IW”'2}”
M

hence

1
A7%c2 (M) > 18 / (s* +5)%0.
M
The inequality is strict because if not, the structure would be Kahler (see forfs)cand we assumed
otherwise. Further, using Schwarz inequality &b2), we get

2
(Gn) - (lwP01) > 5((ex v [w]) (M))?,

which is the inequality claimed. O

4. Examples

We already remarked in the introduction that part ATéieorem 1provides first examples of sym-
plectic manifolds which do not admit compatible Einstein metrics. We now give such examples with
(c1 Vv [0]" 1 (M) < 0. The first source is the following proposition, which is essentially inspired from
[9], but complements the results there.

Proposition 4. Let (M?", J) be a compact complex manifold and assume éhita Kahler form ands
is a holomorphia2, 0) form on(M?, J). Then for any € R, the formw, = w + t Re(B) is a symplectic
form onM?*. Furthermore, if we assume that = —[w], then the following hold

(i) If n =2m and g” is not identically0, then for|¢| large enough(M*", w,) does not satisfy in-
equalities(14) and (1) hence it does not admit compatible Kahler metrics, nor compatible Einstein
metrics.

(i) 1f n=2m 4 1 andp™ is not identically0, then for|z| large enough{M*"*? w,) does not satisfy
inequality(2), hence it does not admit compatible Einstein metrics.

(iii) If n =2m or n = 2m + 1 and the highest non-zero power @fis k < m, with (25/9)(n — 2k) < n,
then, for|¢| large enough(M?*, w,) does not satisfy inequali{), hence it does not admit compat-
ible Einstein metrics.

Proof. It is well known that on a K&hler manifold any holomorphic form is closed. Thuyss closed
for any¢. To check the non-degeneracy, observe that the only non-vanishing terms from the binomial
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expansion ofy" are those of the form"~2 A g! A p!. But for any forma of type (27, 0), we have the
(pointwise) Hodge—Riemann bilinear relation ($&2, pp. 123 and 110]

n

w”_Zl/\oz/\&:(n—Zl)Hozlzw—‘, (27)
n!

where the norm is the one induced by the Kahler metric correspondiig 9. Thusw, is a symplectic
form for anyz.
Assuming now that; = —[w], the statements from (i), (ii) and (iii) follow by computing

[ — lim (] Vo] 2(M)) - ([w,]" (M)
100 ((c1 V[ 1" H(M))?

in each case. This is easily accomplished identifying the top powersirotthe following binomial
expansions

k]

[51
=Y CACL(t/2% " P AB AP,

(%51
oA =Y CEICY(t/2% " AR AP,
=0
(%521
D’ Ao P=Y " CELC (/%" P AR AR
=0
It follows thatL = +o0 in case (i),L = 0in case (i) and. = % in case (iii). Now the statements

. . ven — — . 25 9
are clear, noting in case (jii) tha’z2=3 < =0 & (25/9)(n — 2k) <n. O

Remarks. (a) Certainly the condition; = —[w] cannot be replaced hy = [w], as in that case there are
no non-trivial holomorphic forms by Kodaira’s vanishing theorem. One would like to understand better
the condition thap™ is not identically O, fom = 2m, orn = 2m + 1. This is trivially satisfied iin = 2,
or 3, by any non-trivial holomorphi@, 0) form. Further, the condition is stable under productg; ihas
this property onM; and g, on M,, then so doeg; + B, on M1 x M,. However, for product manifolds
(or holomorphic fiber bundles), case (iii) does occur wigeis a holomorphia2, 0) form coming from
one of the factors (or from the base).

(b) With the notations from the above proposition, we showe@jrthat if (M*, J, w) is a compact
Kahler surface withe; = —[w], then forall values ofr # 0, the symplectic forms, violate inequality
(14), hence they do not admit compatible K&hler metrics. The same was shown to be true in all higher
dimensions fosmallnon-zero values aof. Now we obtain the same conclusion whehis sufficiently
large andh is even. It is perhaps tempting to conjecture that in any dimension and for any holomorphic
(2,0) form B, the symplectic 2-fornm, does not admit compatible Kahler metrics, for any 0.

The next source of examples is the following proposition, suggested to me by Claude LeBrun.

Proposition 5. Let (M2", ), (M2", 1) be symplectic manifolds such thatM;) = —[1], c1(My) =
—[]. ONM?" = M?"* x M3" (n = n1 4 ny), consider the symplectic forms =+, for > 0. Then
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the manifold(M?*, w,) does not satisfy inequalit§2) and, hence, does not admit compatible Einstein
metrics, in any of the following cases

(i) if 2n; =4, andt is sufficiently large

(i) if 2n, =4, andt is sufficiently smajl
(i) if 2ny > 6, 2n, > 6, (25/9n1 < n, andt is sufficiently large
(iv) if 2ny > 6, 2n, > 6, (25/9)n2 < n, andt is sufficiently small.

Proof. First note that cases (ii) and (iv) can be obtained from (i), respectively (iii), by substitutiity
1/¢. For (i) and (iii), we compute as in the previous proposition
I —li (2 V [w]]"2(M)) - ([, ]" (M)
= m n—1 2
=00 ((c1 V[ ]"=2) (M)
Note thatc; (M) = —([n] + [1]). We easily obtain

wp = Ch"2n"t A p''?,
2 n—2 __ n1—2_ny n1—1 no—1 ni
M+ Ao = (C1 1" +2C, 1"+ C

n—

2tn2—2)nnl A an’
ni—1

M+ ) At = (Cply 1" + CyL 1" Hn™s A ',

with the convention that a binomial coefficie@f is 0 if a <0, orb < 0, ora < b. It follows thatZ = 0

in case (i) and. = Zi’(’;j; in case (iii) and the statements are now clean
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