ACOPLAMENTO DAS ESPECTROMETRIAS DE MOBILIDADE IÔNICA E DE MASSA MALDI-TOF

F.A. Fernandez-Lima¹; C.R. Ponciano²; E. Pedrero³; E.F. da Silveira^{2*}
¹ Instituto Superior de Tecnologias y Ciências Aplicadas, Cuba.
² Pontificia Universidade Católica, Brasil.
³ Facultad de Física-IMRE, Universidad de la Habana, Cuba

Recebido: 29 de Setembro, 2004; Revisado: 24 de Junho, 2005

Palavras-chave: Espectrometria de Mobilidade Iônica, Espectrometria de Massa MALDI-TOF, Tempo de Vôo.

RESUMO

Atualmente, a identificação de proteínas em materiais biológicos complexos é principalmente feita por espectrometria de massa MALDI (dessorção de íons induzida por laser), após a separação prévia por eletroforese 2D. Postula-se que este procedimento possa ser executado com vantagens se a eletroforese for substituída pela técnica de mobilidade iônica acoplada, em um só instrumento, ao espectrômetro de massa. No presente trabalho é feita uma revisão dos fundamentos da espectrometria de mobilidade iônica, da fonte de íons MALDI, da espectrometria de massa por tempo-devôo (TOFMS), com vistas a um melhor entendimento sobre como a realização instrumental para tal acoplamento pode ser feita na configuração dita extração ortogonal.

ABSTRACT

Nowadays, the protein identification of complex biological materials is performed mainly by mass spectrometry MALDI (laser induced ion desorption), after a previous separation by 2D electrophoresis. It has been proposed that this procedure could be highly improved by the operation, instead of the electrophoresis, of the ion mobility technique coupled in a single instrument to the MALDI spectrometer. In this article, the basic concepts of the ion mobility spectrometry, the MALDI ion source and the time-offlight (TOFMS) mass spectrometry are reviewed. The coupling of these techniques, in the so called orthogonal extraction, is discussed.

1. INTRODUÇÃO

Na ultima década observou-se um progresso fantástico da bioquímica que levou ao aparecimento de áreas como a Genômica e a Proteômica. No último caso, o processo foi catalisado pelo desenvolvimento, nos anos oitenta, de dois métodos de ionização de amostras para análise por espectrometria de massa (MS): a ionização por electrospray (*Electrospray ionization*, ESI) e a dessorção a laser assistida por matriz (*Matrix Assisted Laser Desorption Ionization*, MALDI)[1-4].

A espectrometria de massa, devido a sua elevada sensibilidade, exatidão e resolução na identificação das massas das proteínas, pode ser considerada a principal ferramenta analítica no campo da Proteômica. Dado o grande número e a alta complexidade das amostras biológicas, diversas etapas de purificação são exigidas para sua análise e, em conseqüência, existe uma forte demanda para o desenvolvimento de métodos rápidos e eficientes de separação que possam ser acoplados à MS.

As metodologias atuais para a análise de misturas de proteínas são baseadas em protocolos introduzidos inicialmente por Henzel et al. [5] nos quais as proteínas constituintes da amostra são separadas por eletroforese 2D. Em seguida, as proteínas em cada ponto revelado no gel são digeridas e o produto final é analisado por MALDI-MS, gerando o mapa peptídico da proteína. Embora este método seja hoje o mais eficaz, o processo é demorado, trabalhoso e de difícil reprodutibilidade. As avaliações completas de um gel, incluindo a análise dos dados, levam aproximadamente um dia para serem feitas [6]. Para a segunda etapa, a análise dos pontos revelados no gel por MS, precisa-se de quase um mês. Embora este tempo possa ser reduzido para três a sete dias em um sistema parcialmente automatizado, ele ainda é uma limitação séria no estudo de amostras que evoluem continuamente [7]. Deve ser ressaltado que a eletroforese não é adequada para proteínas hidrofóbicas, básicas, muito grandes ou muito pequenas, o que limita a universalidade do protocolo.

A espectrometria de mobilidade iônica (*Ion Mobility Spectrometry*, IMS) já era considerada nos anos 70 uma importante ferramenta analítica [8]. Por esta razão e por ser uma técnica de separação rápida e limpa, foi proposto o seu emprego para substituir a eletroforese 2D. A IMS baseia-se na separação em fase gasosa dos íons de interesse em função da quantidade Ω/Z , definida como a razão entre a seção eficaz de colisão Ω entre os íons e as moléculas do gás no qual eles se difundem e o estado de carga Z desses íons. Denominada inicialmente como *Plasma Chromatography* ou *Ion Chromatography* [9], esta técnica é aplicada na análise de compostos orgânicos voláteis [8,10] e de fulerenos [11], sendo também usada como sonda dos estados eletrônicos de íons [12]. Na maioria dos trabalhos, a ESI é empregada como fonte de íons para a célula de mobilidade, entre-

^{*} enio@vdg.fis.puc-rio.br

tanto, outras fontes de íons também podem ser acopladas com sucesso à IMS: dessorção por laser, impacto de elétrons, fontes de agregados e descarga por arco [10].

Nos últimos anos, visando a análise de biomoléculas, diversos sistemas foram desenvolvidos para acoplar IMS a fontes de íons ESI [13-16] ou MALDI [17-19]. Os resultados preliminares indicam que a combinação IMS-MS é uma ferramenta potencialmente poderosa para a análise de proteínas e peptídeos, justificando seu aperfeiçoamento. Em particular, o acoplamento de extração ortogonal IMS-o-TOFMS, em um único instrumento, permite aumentar o grau de confiança na identificação de proteínas pela análise de duas de suas características básicas: a conformação (dada por sua mobilidade no gás) e a massa (determinada com acurácia nos analisadores TOF). Em outras palavras: como a forma geométrica (tridimensional) de uma proteína é determinante para a sua função biológica, informações sobre essa forma são extremamente úteis na caracterização dela.

Na análise de biomoléculas, o acoplamento MALDI-IMS tem várias vantagens sobre ESI-IMS. Por exemplo: i) a ionização por ESI de peptídeos, proteínas e DNA gera diversos estados de carga (valores de m/z) e pode causar ambigüidades na análise, enquanto que, na ionização MALDI o estado de carga simples das moléculas protonadas, (M+H)⁺, é o dominante; ii) na ESI, por funcionar em regime continuo, só parte dos íons pode ser introduzida na célula de IM (desperdiçando assim boa parte do material) ou acumulada numa armadilha de íons e depois injetada na célula de IM, enquanto MALDI opera em regime pulsado, adequado para a análise por tempo-de-vôo (TOF).

Assim, na fase atual do conhecimento, o acoplamento MALDI-IMS-o-TOFMS apresenta-se como o melhor candidato para a análise de biomoléculas. Com o objetivo de discutir as características do acoplamento MALDI-IMS-o-TOFMS, os fundamentos das técnicas envolvidas são revistos teoricamente e um projeto experimental é descrito.

2. PARTE TEÓRICA

2.1. ESPECTROMETRIA DE MOBILIDADE IÔ-NICA

A espectrometria de mobilidade iônica baseia-se na separação dos íons por suas diferentes velocidades de difusão (*drift velocit*) v_d em um gás inerte (*buffer*) sob a ação de um campo elétrico externo (E). Para campos não muito intensos, a velocidades de difusão aumenta proporcionalmente com o campo local E:

$$v_d = K E \tag{1}$$

O coeficiente K é denominado **mobilidade**, sendo característico da difusão de cada espécie iônica.

A grandeza a ser medida na Espectrometria de Mobilidade Iônica é o **tempo de trânsito** t_D dos íons na célula gasosa de comprimento L_D :

$$t_{D} = \int_{0}^{L_{D}} \frac{dx}{v_{d}} = \frac{1}{K} \int \frac{dx}{E}$$
(2)

Por esta expressão vê-se que o tempo de difusão é inversamente proporcional a K, mesmo quando a componente axial

do campo \vec{E} não for uniforme ao longo da célula de difusão. Ainda na condição de campos não muito intensos, a velocidade de difusão decresce linearmente a medida que o número de colisões entre o íon e as moléculas do gás aumenta, o que significa que K é inversamente proporcional a pressão do gás, p, ou a densidade dele, N.

Uma expressão geral para a mobilidade K, válida para campos de intensidade altas ou baixas, pode ser obtida a partir de primeiros princípios e sua dedução é apresentada no Apêndice. Para o caso de campos de intensidades baixas, a mobilidade K não depende da intensidade do campo E e, em primeira aproximação, pode ser escrita como [20]:

$$K = \frac{3}{16} \frac{q}{N} \sqrt{\frac{1}{\mu} \frac{2\pi}{k_B T}} \frac{1}{\Omega_D}$$
(3)

onde q é a carga do íon, μ a massa reduzida íon-molécula, k_B a constante de Boltzmann, T a temperatura do gás e Ω a **seção de choque de colisão** entre o íon e a molécula do gás. A determinação de Ω permite determinar a área aparente da espécie iônica, fornecendo informação crucial sobre sua forma. A substituição da eq. (3) em (2) mostra que t_d é diretamente proporcional à área aparente do íon, que depende por sua vez tanto da massa do íon quanto de sua estrutura geométrica; entretanto esta ambigüidade pode ser eliminada com o uso concomitante da espectrometria de massa.

Cabe destacar que, na análise de macro-moléculas, o valor da massa reduzida μ é muito próximo ao valor da massa do gás, o que faz com que sua contribuição na eq. (3) seja quase constante para massas maiores que 0.5 kDa. Desta forma, a mobilidade K no caso de macromoléculas depende fundamentalmente do valor inverso de $\Omega_{\rm D}$.

Poder de resolução teórico da mobilidade iônica:

A possibilidade de resolver duas conformações com seções eficazes de colisão diferentes Ω_D pode ser avaliada a partir da expressão do poder de resolução temporal [25]:

$$\frac{t_D}{\Delta t_D} = \sqrt{\frac{L_D q E}{16k_B T \ln 2}} \tag{4}$$

onde Δt_D representa a largura do pico de mobilidade iônica na metade de sua altura (FWHM).

Para aumentar o poder de resolução instrumentalmente temse três opções:

 Aumento de E. Para isso é necessário também aumentar a pressão P, de modo que a mobilidade continue independente do valor do campo. Esta melhoria é limitada, já que com pressões de trabalho acima de 10 torr a alta probabilidade de fragmentação da molécula de interesse reduz significativamente seu sinal no detector.

- Aumento de L_D. Comprimentos longos da célula também aumentam a difusão dos íons perpendicularmente à direção do campo.
- Esfriamento do gás de difusão. Note-se que, com a diminuição da temperatura de trabalho T de 298 K para 77 K, o poder de resolução dobra.

2.2. FONTE DE ÍONS MALDI

A fonte de íons MALDI baseia-se na absorção intensa da radiação laser por uma matriz, que é misturada em solução com quantidades muito pequenas da biomolécula de interesse (o analito). A mistura matriz-analito é depositada sobre o porta amostra e secada, produzindo uma amostra sólida.

Supõe-se que as funções da matriz sejam: i) absorver fortemente a radiação laser para possibilitar uma transferência eficiente da energia do pulso de radiação para o analito e ii) isolar as moléculas de analito umas das outras, para diminuir as ligações intermoleculares e permitir a dessorção intacta das moléculas. A rápida elevação da temperatura devido a interação da radiação laser com a amostra, tanto na fase sólida quanto gasosa, gera uma pressão extremamente alta na mistura matriz-analito em sublimação.

Dois mecanismos são possíveis para a criação de íons no sistema matriz-analito [4]: i) ablação explosiva em clusters a partir de uma energia limiar [21,22] e ii) expansão gasosa em jato, no qual as moléculas do analito estão dispersas dentro da matriz [23-25].

2.3. ESPECTROMETRIA DE MASSA POR TOF

O tempo de vôo é o tempo que os íons levam para percorrer, em vácuo, uma determinada distância dentro do espectrômetro de massa. Em geral, esse percurso é constituído por uma ou duas regiões de aceleração curtas e outra região, longa, livre de campo elétrico. Sendo U o potencial acelerador, a energia cinética que os íons de massa m e carga q possuem ao entrarem na região livre de campo é iqual a qU. O tempo necessário para que atravessem esta região, de comprimento L, é:

$$t_{\nu} = L \sqrt{\frac{m}{2qU}} \tag{5}$$

mostrando que os íons podem ser discriminados de acordo com as suas razões massa/carga ao serem detectados no fim do trajeto.

No caso de um espectrômetro de massa de dois estágios de aceleração, como o mostrado na Fig. 1, o tempo-de-vôo (TOF) pode ser escrito em função das distâncias dos dois estágios de aceleração ($d_1 e d_2$), dos potenciais das grades do primeiro e do segundo estágio ($U_0 e U_1$), da massa (m) e da carga (q) do íon:

$$\text{TOF} = \frac{d_1}{v_R} + \frac{d_2}{v_R/2} \left(\frac{\sqrt{R}}{1+\sqrt{R}}\right) + \frac{L}{v_R} \sqrt{R} \qquad (6)$$

onde

$$v_R = \sqrt{\frac{2q}{m}(U_1 - U_0)}$$
 e $R = \frac{U_1 - U_0}{U_1}$

Os campos aceleradores do primeiro e do segundo estágio são respectivamente:

$$\vec{\varepsilon}_1 = (U_0 - U_1)/2d_1$$
 e $\vec{\varepsilon}_2 = U_1)/d_2$ (7)

Uma descrição detalhada da dinâmica dos íons e dos efeitos de penetração de campo em sistemas com campo pulsado e dois estágios de aceleração pode ser encontrada na referência [26].

É bem conhecido na técnica TOF que a distribuição inicial de velocidades dos íons tem grande efeito na resolução em massa obtida. A extração no modo ortogonal resolve parcialmente este problema uma vez que a fenda imediatamente antes da região de extração elimina os íons com velocidade radial relativamente elevada.

3. PARTE EXPERIMENTAL

Na Fig. 1 é ilustrado esquematicamente como uma célula de mobilidade iônica IMS pode ser inserida entre uma fonte de íons MALDI e um espectrômetro de massa com extração ortogonal: é o acoplamento MALDI-IMS-o-TOFMS.

Em linhas gerais, os íons produzidos na amostra são forçados, via campo elétrico (<20 V/mm) criado pelos eletrodos anulares, a colidir com o gás inerte (geralmente He ou N₂). Os íons de menor área aparente são mais rápidos e saem primeiro da célula gasosa. Um campo elétrico pulsado, ortogonal ao eixo da célula, dá início à etapa da determinação da massa por TOF. O detector situado após a região de extração ortogonal é útil para monitorar a etapa de IM.

Figura 1 - O acoplamento MALDI-IMS-o-TOFMS. . Os componentes são: laser, pulsador de alta tensão (HV_P), controlador de tempo (CONT_TEMP), pré-amplificador (preamp), *constant fraction discriminator* (CFD), conversor tempodigital tipo *multi-stop* (TDC) e computador (PC).

3.1. ESQUEMA DE AQUISIÇÃO NO MALDI-IMS-O-MSTOF:

A construção do espectro bidimensional IMS-TOF completo é feita com N disparos de laser sobre a amostra. A cada disparo, os íons são separados na célula de difusão e passam pelo *skimmer* na forma de uma fila de íons (ordenados por sua área aparente e massa), a qual será subdividida em N² segmentos. Por disparo, N destes segmentos são analisados pelo espectrômetro TOF, sendo os demais segmentos perdidos. No disparo seguinte, outros N segmentos são analisados e, após N disparos, todo o espectro terá sido analisado. Uma observação importante é que os N segmentos analisados em cada disparo não são consecutivos, mas se distribuem uniformemente pelo espectro IMS, de forma a impedir que haja superposição no detector de um íon lento de um segmento com um íon rápido de segmento que o sucede.

Para maior clareza, um exemplo numérico será apresentado a seguir.

A estrutura de montagem de um espectro MALDI-IMS-o-TOFMS, com N = 10 e para espectros TOF de 26 μ s de duração, é ilustrada na Fig 2. O disparo do laser cria íons por MALDI e dá início ao processo IMS. As extrações ortogonais o-TOFMS são feitas a cada disparo do laser, pulsando o campo extrator 10 vezes (freqüência de 1/(26 μ s) = 38 kHz).

Figura 2 - Seqüência dos disparos laser e as pulsações do campo extrator. Para cada disparo laser, existem 10 pulsações do campo, cada uma destas gerando 1 espectro TOF de 26 μs (baseado na ref.[27]).

Figura 3 - Estrutura da montagem de um espectro bidimensional IMS x TOF. No 1º disparo laser (1º IMS) são obtidos os 10 espectros TOF: 1-1, 1-2, ..., 1-10.

Após cada disparo do laser, a extração ortogonal (o-TOFMS) é atrasada em 2.6 µs com relação ao disparo anterior. Decorridos 10 disparos do laser, as frações do espectro IMS são agrupadas, completando-o. Na Fig 3 é ilustrada a construção do espectro bidimensional correspondente a este esquema de aquisição. Como resultado, obtém-se uma matriz IMS x TOF onde as moléculas estão separadas por massa e por mobilidade.

3.2. CONFIGURAÇÃO DO MALDI-IMS-O-TOFMS

O início do ciclo de aquisição é dado pelo controlador de tempo CONT TEMP, que dispara sucessivamente N vezes o laser. Para cada um destes disparos, o pulsador de alta tensão HV P também é disparado N = 10 vezes. Segmentos de espectros de IMS e de MSTOF são adquiridos sincronizadamente (ver Fig. 2) para serem reunidos posteriormente no computador. Os íons são produzidos na amostra pela absorção de um pulso de radiação laser ultravioleta e lançados dentro da célula de mobilidade iônica, passando a colidir com o gás inerte mantido à pressão de alguns torr. Uma dezena de eletrodos anulares co-axiais no interior da célula de mobilidade iônica garante um campo elétrico E, aproximadamente uniforme e da ordem de 20 V/mm, ao longo do eixo da célula. A configuração dos anéis é projetada de forma a causar uma focalização centrípeta ao longo do eixo da célula, evitando a dispersão dos íons para longe de sua região central

A célula de mobilidade iônica comunica-se com um espectrômetro de massa por tempo de vôo através de um *skimmer* de 300-500 µm de diâmetro, necessário para manter a diferença de pressão entre as duas regiões do instrumento (ver Fig 1). Após passarem pelo *skimmer*, os íons são focalizados e extraídos ortogonalmente para serem separados por massa no analisador TOF. Na extração ortogonal, o poder de resolução temporal é aumentado, dado que a velocidade inicial radial é desprezível em relação à axial (na direção do eixo da célula de difusão).

A extração ortogonal ocorre quando, em um determinado instante após o disparo do laser, o pulsador de alta tensão HV_P aciona o campo \mathcal{E}_1 perpendicular ao movimento dos íons. Este pulsador é regido pelo controlador CONT TEMP que também gera o trem de pulsos (o-TOF) mostrado na Fig. 2. No analisador TOF, os íons atravessam o primeiro estágio de aceleração (de comprimento d₁), são novamente acelerados no segundo estágio (comprimento d₂) pelo campo ε_2 (onde $\varepsilon_2 >> \varepsilon_1$) e finalmente entram na região livre de campo (comprimento L). O sinal gerado pelo íon ao chegar no detector é amplificado (preamp), conformado por um CFD e analisado por um conversor tempo-digital (TDC). Este último módulo é um relógio que determina os intervalos de tempo decorridos entre cada um dos sinais gerados pelo detector e o sinal start dado pelo contador temporal, registrando-os digitalmente. O sinal start é produzido a cada pulso gerado pelo pulsador de alta tensão. Um espectro TOF é adquirido para cada pulso do trem de pulsos e a duração do TOF é fixada pelo espaçamento entre os pulsos do trem de pulsos.

Os sinais tratados pelo TDC são transferidos para o computador com uma taxa de 33 MB/s onde é construído o espectro bidimensional de mobilidade vs massa/carga.

4. COMENTÁRIOS FINAIS

O acoplamento MALDI-IMS-o-TOFMS é descrito teórica e instrumentalmente. As equações que descrevem o processo de IMS e a extração ortogonal MSTOF são mostradas. Os diferentes componentes do acoplamento e o esquema de funcionamento são descritos.

Pelas possibilidades que oferece, o acoplamento MALDI-IMS-o-TOFMS apresenta-se como o melhor candidato para a separação e identificação em serie de biomoléculas. No presente momento, vários protótipos do instrumento descrito estão em operação no exterior; os autores estão desenvolvendo um novo protótipo no país.

5. AGRADECIMENTOS

Os autores agradecem ao CLAF, à Rede de Proteoma- RJ e às Agências CNPq e Faperj.

6. APÊNDICE

O cálculo da mobilidade K

A demonstração abaixo segue a feita por H.E. Revercomb e E.A. Mason [20].

Supondo que os íons sejam imobilizados após cada colisão com as moléculas do gás na célula de mobilidade iônica, a velocidade de difusão (v_d) será dada pela velocidade média entre duas colisões sucessivas. Como a força externa sobre cada íon é qE, sua aceleração é qE/m e a velocidade média entre duas colisões será (qE/2m) τ , onde τ é o tempo médio entre duas colisões. Entretanto, os íons não param completamente após cada colisão, o que eleva o valor de v_d. Em um regime estacionário, o momento médio transferido pelos íons às moléculas neutras do gás por colisão é igual ao momento médio ganho pelos íons entre colisões:

$$M < \vec{V} - \vec{V} > = qE\tau \tag{A1}$$

onde \vec{V} e \vec{V} ' são respectivamente as velocidades das moléculas neutras antes e depois da colisão e M a massa destas. Esta expressão pode ser aplicada a gases com densidades suficientemente baixas, bem abaixo da pressão atmosférica, onde as colisões binárias íon-molécula predominam. Supõe-se também que o número de íons seja muito menor do que o número de moléculas neutras, de modo que as colisões íon-íon possam ser desprezadas, assim como as colisões consecutivas entre a molécula neutra e dois íons. Como a velocidade média do gás é relativamente pequena, a velocidade média das moléculas neutras pode ser considerada nula, $\langle V \rangle = 0$. Desta forma, a equação (A1) pode ser reescrita como:

$$M < V' > = qE\tau \tag{A2}.$$

Para calcular o valor de $\langle \vec{V'} \rangle$, será considerado que as colisões ocorram ao acaso em relação à direção de movimento dos íons, fazendo com que estes sejam espalhados aleatoriamente em qualquer direção após cada colisão. Utilizandose um sistema de referência que se move com o centro de massa do par íon-molécula em colisão, a velocidade relativa após a colisão é zero:

$$\langle \vec{v}_r' \rangle \equiv \langle \vec{v} - \vec{V}' \rangle = 0$$
, ou $\langle \vec{v}' \rangle = \langle \vec{V}' \rangle$ (A3)

onde \vec{v} é a velocidade do íon após a colisão.

O valor de $\langle \vec{v}' \rangle$ é determinado pela equação de conservação do momento linear durante uma colisão:

$$m < \vec{v} > +M < \vec{V} > = m < \vec{v}' > +M < \vec{V}' >$$
 (A4)

Substituindo $\langle \vec{v} \rangle = v_d$, $\langle \vec{V} \rangle = 0$ e $\langle \vec{v}' \rangle = \langle \vec{V}' \rangle$ na equação (A4) obtém-se:

$$\langle \vec{v} \rangle \equiv v_d = (1 + \frac{M}{m}) \langle \vec{V'} \rangle$$
 (A5)

Tomando o valor de $\langle \vec{V} \rangle$ da eq. (A2) tem-se que:

$$v_d = \frac{qE\tau}{M} + \frac{qE\tau}{m}$$
(A6)

O primeiro termo da eq. (A6) representa a velocidade média dos íons após uma colisão e o segundo termo representa a velocidade média ganha por eles em decorrência da ação do campo entre as colisões.

Para completar o cálculo de K, necessita-se de uma expressão para τ . Supõe-se que as moléculas do gás estejam paradas, de forma que os íons movimentam-se entre elas com uma velocidade média relativa, $\langle v_r \rangle$. Então, no tempo τ , um íon percorre a distância $\langle v_r \rangle \tau$. Se Ω_D for a área efetiva para a colisão íon-molécula neutra (no caso de esferas rígidas $\Omega_D = \pi d^2$, onde d é a soma dos raios do íon e da molécula neutra), então a densidade de moléculas do gás N pode ser escrita como:

$$N = \frac{1}{\langle v_r \rangle \tau \,\Omega_D} \tag{A7}$$

pois só haverá uma molécula no volume $\langle v_r \rangle \tau \Omega_D$. Substituindo este resultado na equação (A6) tem-se que:

$$v_d = \frac{qE}{N} \left(\frac{1}{m} + \frac{1}{M}\right) \frac{1}{\langle v_r \rangle \Omega_D}$$
(A8)

A velocidade média relativa $\langle v_r \rangle$ pode ser aproximada através de sua raiz quadrática média:

$$\langle v_r \rangle^2 \approx \langle v_r^2 \rangle = \langle |\vec{v} - \vec{V}|^2 \rangle =$$

= $\langle v^2 \rangle + \langle V^2 \rangle - 2 \langle \vec{v} \bullet \vec{V} \rangle = \langle v^2 \rangle + \langle V^2 \rangle$ (A9)

onde $\langle \vec{v} \bullet \vec{V} \rangle = 0$ por ter a velocidade \vec{V} uma distribuição isotrópica.

O valor de $\langle \vec{V}^2 \rangle$ pode ser calculado a partir da energia térmica das moléculas:

$$\frac{1}{2}M < \vec{V}^2 >= \frac{3}{2}kT \tag{A10}$$

No caso dos íons, as colisões não apenas absorvem energia, como também a redistribuem aleatoriamente. Para calcular a energia total dos íons considera-se as equações de conservação da energia. A energia média transferida por colisão tem que ser igual a energia média adquirida entre colisões, qE<x>, onde $<x> = v_d \tau$ é a distância média percorrida na direção do campo. Então, tem-se que:

$$\frac{1}{2}m < \vec{v}^2 - \vec{v}'^2 > = \frac{1}{2}M < \vec{V}'^2 - \vec{V}^2 > = qE(v_d\tau)$$
(A11)

onde a primeira igualdade refere-se à conservação da energia e a segunda à transferência de energia.

Substituindo o valor de τ da equação (A6) obtém-se:

$$\frac{1}{2}m < \vec{v}^{2} > -\frac{1}{2}m < \vec{v}'^{2} > = (\frac{1}{m} + \frac{1}{M})^{-1} v_{d}^{2}$$
(A12)

Aplicam-se agora as considerações anteriores do efeito aleatório das colisões no sistema de referência do centro de massa. A velocidade do centro de massa pode ser escrita como:

$$\vec{v}_{cm} = \frac{m\vec{v} + M\vec{V}}{m + M} \tag{A13}$$

e a velocidade relativa por:

$$\vec{v}_r \equiv \vec{v} - V \tag{A14}$$

Em função destas quantidades, as velocidades do íon antes e depois da colisão podem ser reescritas como:

$$\vec{v} = \vec{v}_{cm} + \frac{M}{m+M}\vec{v}_r$$
, $\vec{v}' = \vec{v}'_{cm} + \frac{M}{m+M}\vec{v}'$,
(A15)

Aplicando a conservação do momento linear ($\vec{v}_{cm} = \vec{v}'_{cm}$), a conservação da energia em colisões elásticas ($v_r^2 = v'_r^2$), elevando ao quadrado e subtraindo as equações (A15) temse que:

$$\langle v^{2} \rangle - \langle v'^{2} \rangle =$$

$$= \frac{2M}{m+M} \langle \vec{v}_{cm} \bullet \vec{v}_{r} \rangle - \frac{2M}{m+M} \langle \vec{v}_{cm} \bullet \vec{v}'_{r} \rangle$$
(A16)

O último termo em (A16) pode ser desprezado, uma vez que $\vec{v'}_{cm} \in \vec{v'}_r$ podem ser consideradas grandezas independentes. Substituindo os valores de $\vec{v}_{cm} \in \vec{v}_r$ das equações (A13) e (A14) na equação (A16) tem-se que:

$$< v^{2} > - < v'^{2} >=$$

= $\frac{2M}{m+M} < mv^{2} + MV^{2} + (M-m)\vec{v} \cdot \vec{V} >$ (A17)

O último termo da eq. (A17) é igual a zero uma vez que $\langle \vec{V} \rangle = 0$. Finalmente, combinando as eqs. (A17), (A12) e (A10) obtém-se:

$$\frac{1}{2}m < v^2 > = \frac{3}{2}kT + \frac{1}{2}mv_d^2 + \frac{1}{2}Mv_d^2 \qquad (A18)$$

e a equação para a velocidade de difusão v_d pode ser reescrita como:

$$v_d = \frac{qE}{N} \left(\frac{1}{m} + \frac{1}{M}\right)^{1/2} \frac{1}{(3kT + Mv_d^2)^{1/2}} \frac{1}{\Omega_D}$$
(A19)

ou ainda:

$$(v_d^2)^2 + \frac{3kT}{M}(v_d^2) - \frac{1}{M}(\frac{1}{m} + \frac{1}{M})(\frac{qE}{N\Omega_D})^2 = 0$$
 (A20)

As equações (A19) e (A20) são válidas para qualquer intensidade do campo E. A determinação do valor de v_d é possível se a dependência de Ω_D com v_d for conhecida. De uma forma geral, a velocidade de difusão v_d só depende de qE/N Ω_D , válido para qualquer intensidade do campo E. Para intensidades de campo baixas (baixo E/N), a velocidade de difusão é muito menor do que a velocidade térmica das partículas, o que faz com que a mobilidade K seja independente da intensidade do campo aplicado. Porém, para intensidades de campo elevadas, a velocidade de difusão é muito maior do que a velocidade térmica das partículas, a mobilidade K=K(E/N), o que faz com que os íons possam se alinhar de alguma forma dentro da célula de mobilidade.

Relação entre a mobilidade e a constante de difusão. Equação de Einstein

A mobilidade, K, para intensidades de campo baixas está relacionada com o coeficiente de difusão, D. Este coeficiente descreve o movimento dos íons através do gás inerte, que é regido pela ação de pequenos gradientes de concentração ou pelo movimento Browniano. A relação entre a mobilidade e a constante de difusão é dada pela relação de Einstein, também conhecida como a relação de Nerst-Einstein ou, ainda, relação de Nerst-Townsend-Einstein.

A obtenção da relação entre K e D é descrita a seguir. O número de íons por unidade de área e tempo, J, é proporcional ao campo elétrico e ao gradiente da concentração de íons na direção do campo E através da relação:

$$J = nKE - D\frac{\partial n}{\partial x}$$
(B1)

onde n é o número de íons por unidade de volume.

No equilíbrio, a distribuição de íons pode ser descrita pela distribuição de Boltzman:

$$n = n_0 e^{+qEx/K_BT}$$
(B2)

onde k_B é a constante de Boltzman, e o sinal positivo da exponencial é dado pela convenção de sinais entre a carga iônica q (q=eZ), E e x. Diferenciando (B2) em relação a x tem-se que:

$$\frac{\partial \mathbf{n}}{\partial \mathbf{x}} = n \frac{qE}{kT} \tag{B3}$$

Substituindo a equação (B3) na equação (B1), e lembrando que no equilíbrio J = 0, obtém-se a relação de Einstein:

$$K = qD/kT \tag{B4}$$

As únicas condições necessárias para a obtenção desta equação são: que o campo elétrico E seja linear em função de J e de $\partial n / \partial x$ e que o sistema esteja perto do equilíbrio para que possa utilizar a equação (B2).

7. BIBLIOGRAFIA

- 1. KARAS, M.; HILLENKAMP, F., Anal Chem. 60 (1988) 2229.
- 2. YAMASHITA, M.; FENN, J.B., Phys. Chem. 88 (1988) 4451.
- 3. AEBERSOLD, R.; GOODLET, D.R., *Chem. Rev.* 101 (2001) 269.
- 4. KARAS, M.; BAHR, U., Large Ions: Their vaporization, Detection and Structural Analysis, Wiley, 1996.
- HENZEL, W.J.; BILLECI, T.M.; STULTS, J.T.; WONG, S.C.; GRIMLEY, C.; WATANABE, C., *Proc. Natl. Acad. Sci. USA* 90 (1993) 5011.
- 6. LOPEZ, M.F., *Electrophoresis* 21(2000) 1082.
- 7. HILLE, J. M. et al., *Electrophoresis* 22 (2001) 4035.
- 8. KARASEK, F.W., Anal Chem. 46 (1974) 710.
- 9. CARR, T.W., *Plasma Chromatography*. New York: Plenum Press, 1984.
- 10. EICEMAN, G.A.; KARAPAS, Z., *Ion Mobility Spectrometry*. Boca Raton: CRC Press, 1994.
- FYE, J.L; JARROLD, M.F.; Int. J. Mass Spectrom. 185-187 (1999) 507.
- 12. KEMPER, P.R.; BOWERS, M.T., J. Phys. Chem. 95 (1991) 5134.
- CLEMMER, D.E.; JARROLD, M.F., J. Mass Spectrosc, 32 (1997) 577.
- 14. COUTERMAN, A.E.; CLEMMER, D.E., J. Am. Chem Soc. 123 (2001) 1490.
- 15. WU, C.; SIEMS, W.F.; KLASMEIER, J.; HILL, H.H., Anal Chem. 72 (2000) 391.

- 16. WYTTENBACH, T.; KEMPER, P.R.; BOWERS, M.T., Int. J. Mass Spect. 212 (2001) 13.
- KOOMEN, J.M.; RUOTOLO, B.T.; GILLIG, K.J.; MCLEAN, J.A.; KANG, M.; FUHRER, K.; GONIN, M.; SCHULTZ, J.A.; DUNBAR, K.R.; RUSSELL, D.H., J. Anal. Bioanal. Chem. 373 (2002) 612.
- RUOTOLO, B.T., VERBECK, G.F.; THOMSON, L.M.; WOODS, A.S.; GILLIG, K.J.; RUSSELL, D.H., J. Proteome Res. 1 (2002) 303.
- STONE, E.G., GILLIG, K.J.; RUOTOLO, B.T.; RUSSELL, D.H. Int. J. Mass Spect. 212 (2001) 519.
- REVERCOMB, H.E.; MASON, E.A., Anal. Chem. 47 (1975) 970.
- 21. BEAVIS, R.C.; CHAIT, B.T., Chem. Phys. Lett. 181 (1991) 479.
- 22. BÖKELMANN, V.; SPENGLER, B.; KAUFMANN, R., Eur. Mass Spectrom. 1 (1995) 81.
- 23. ZHIGUILEI, L.V.; KODALI, P.B.S.; GARRISON, B.J., Chem. Phys. Lett. 276 (1997) 269.
- ZHIGUILEI, L.V.; GARRISON, B.J., Mass Spectrom. 12 (1998) 1273.
- KARAS, M.; GLÜCKMANN, M.; SCHÄFER, J., J. Mass Spectrom. 35 (2000) 1.
- 26. COLLADO, V.M.; PONCIANO, C.R.; FERNANDEZ-LIMA F.A.; DA SILVEIRA, E.F., *Rev. Sci. Instrum.* 75 (2004) 2163.
- FUHER, K.; GONIN, M.; MCCULLY, M.I.; EGAN, T.; UL-RICH, S.R.; VAUGHN, V.W.; BURTON JR., W.D.; SCHULTZ, J. A., ASMS Conference, Chicago, 2001.