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Abstract In the present work, we demonstrate the potential
and versatility of TIMS for the analysis of proteins, DNA-
protein complexes and protein-protein complexes in their na-
tive and denatured states. In addition, we show that accurate
CCS measurement are possible using internal and external
mobility calibration and in good agreement with previously
reported CCS values using other IMS analyzers (<5 % differ-
ence). The main challenges for the TIMS-MS analysis of high
mass proteins and protein complexes in the mobility and m/z
domain are described. That is, the analysis of high molecular
weight systems in their native state may require the use of
higher electric fields or a small compromise in the TIMS mo-
bility resolution by reducing the bath gas velocity in order to
effectively trap at lower electric fields. This is the first report
of CCSmeasurements of high molecular weight biomolecules
and biomolecular complexes (~150 kDa) using TIMS-MS.

Keywords TIMS . IMS-MS . Ionmobility spectrometry –
mass spectrometry . Proteins . Ion—neutral collision cross
sections

Introduction

Experimental determination of biomolecular structures re-
mains a challenging problem despite recent developments in

theoretical approaches that are based on available experimen-
tal structural observations (e.g., ab initio, molecular dynamics
and bioinformatics-based prediction strategies) [1]. The eluci-
dation of structural features of interest for biomolecules and
biomolecular complexes is challenging because of the highly
heterogeneous and dynamic character of biomolecules and
their low relative concentrations within physiologically rele-
vant conditions [2–11]. While X-ray crystallography and
NMR spectroscopy excel at revealing structures of molecules
at the atomic level, these approaches are limited by the fact
that they often describes a single state of the biomolecule and/
or biomolecular complex structure [12–17]. Moreover, since
neither technology involves component separation during
analysis, both require highly purified samples [18, 19].

Recent innovations in speed, accuracy, and sensitivity have
established mass spectrometry (MS) based methods as a key
technology within the field of structural biology [20].
Specifically native MS techniques, which have been devel-
oped over the last two decades, permits the structural interro-
gation of intact biomolecules and biomolecular complexes at
biologically relevant conditions, which are not accessible by
other methods [21–25]. Attention has been drawn towards the
characterization of intrinsically disordered proteins (IDP)
[26–28], antibody therapeutics [29–32], and even massive
protein complexes [33–37] that cannot be studied using tradi-
tional structural techniques. Most common gas-phase structur-
al probing is based on, or a combination of, tandem MS (er-
godic and non-ergodic), gas-phase hydrogen-deuterium ex-
change, ion spectroscopy, and ion mobility spectrometry.

In particular, ion mobility spectrometry (IMS) is based on
the separation of ions as they drift in a bath of inert neutral
molecules under the influence of a weak electric field [38–40].
The ion’s mobility gives information on their size and shape
via the momentum transfer ion-neutral collision cross section
(CCS) [41]. This description holds true for most contemporary
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IMS analyzers (e.g., periodic focusing DC ion guide [42–44],
segmented quadrupole drift cell [45], multistage IMS [46–48],
traveling wave ion guide (TWIMS) [49, 50], and SLIM de-
vices [51]), and a common pursuit has been to increase IMS
resolving power and ion transmission [52–60]. Many different
forms of IMS have been used in the analysis of biological
molecules for the analysis of isotopomers [61], proteins [62,
63], protein complexes [64–71], folding pathways [72–74],
unstructured/intrinsically disordered proteins [75–79], as well
as collisionally activated states of peptides and proteins [69,
80–87]. It should be noted that, in the case of structural biol-
ogy, gas-phase studies take advantage of the desolvation pro-
cess to effectively reduce sample complexity, permitting mo-
lecular characterization in the absence of bulk solvent.

With the recent introduction of a new IMS analyzer -
Trapped Ion Mobility Spectrometer (TIMS)- the possibility
to decouple the time domain from the IMS separation allows
for the study of conformationally trapped molecular ions in
the gas-phase as a function of the desolvation time, tempera-
ture and bath gas composition. TIMS’ mode of operation and
its advantages over traditional IMS are described in ref
[88–90]. We have shown the use of TIMS for the study of
isomerization kinetics of small molecules [91], peptides [92],
and proteins [19, 93–95], the influence of the collision partner
on the molecular structure [96], and the factors that affect
molecular-adduct complex lifetime and stability during
TIMS measurements [97]. In particular, we have shown the
combination of simultaneous measurement of first principle
derived collision cross sections and back-exchange HDX rates
using a TIMS device with theoretical calculations for the as-
signment of candidate structures of kinetic intermediates as a
way to study folding/unfolding pathways [92].

In this work, we further investigate the potential of trapped
ion mobility spectrometry (TIMS) for the separation and char-
acterization of high molecular weight proteins and protein
complexes. In particular, the discussion is based on the fun-
damental factors that affect the molecular ion trapping of high
mass molecular systems, the collision cross section calcula-
tions and the differences between native and non-native states.

Experimental methods

Material and reagents

Most proteins utilized in this study were purchased (e.g., ubiq-
uitin, equine holomyoglobin, carbonic anhydrase from bovine
erythrocytes,β-lactoglobulin, equine cytochrome C, and bovine
serum albumin) from Sigma-Aldrich (St. Louis, MO, USA), or
provided by collaborators (e.g., Avastin, HMGA2 [98], rat
Calmodulin [99] and recombinant mouse DREAM [93]) and
used as received. DNA sequences FL875(CCCCCCATATT
CGCGATTATTGCCCCCGCAATAATCG CGAATAT

GGGGGG), FL876 (GGATATTGCCCCCGCAATATCC)
were purchased from Eurofin (Ebersberg, Germany). Protein
solutions were prepared at a final 1–10 μM concentration in
10–100 mM ammonium acetate, 0–50 % methanol, and 0–
10 % acetic acid. Low concentration Tuning Mix (G2421A;
Agilent Technologies, Santa Clara, CA, USA) was used as a
mobility calibration standard. All solvents and ammonium ace-
tate salts used in these studies were analytical grade or better and
purchased from Fisher Scientific (Pittsburg, PA, USA).

TIMS-MS analysis

Details regarding the TIMS operation and specifics compared
to traditional IMS can be found elsewhere [88–92]. Briefly,
mobility separation in TIMS is based on holding the ions
stationary using an electric field against a moving gas. The
separation in a TIMS device can be described by the center of
the mass frame using the same principles as in a conventional
IMS drift tube [41]. Since mobility separation is related to the
number of ion-neutral collisions (or drift time in traditional
drift tube cells), the mobility separation in a TIMS device
depends on the bath gas drift velocity, ion confinement and
ion elution parameters. The mobility in a TIMS analyzer can
be described as:

Ki ¼ υg=Ex ið Þ ¼ A 1= Vout‐Velu ið Þð Þð ð1Þ

where υg is the velocity of the bath gas in the mobility cell and
Ex(i) is the electric field at which the specific packet of ions
elute. These parameters can be related to the elution voltage
(Velu(i)) and the exit voltage (Vout) of the region exit. The
calibration constant Awas determined from previously report-
ed mobility values for Tuning Mix calibration standard
(G24221A, Agilent Technologies, Santa Clara, CA) in nitro-
gen (m/z = 322, K0 = 1.376 cm2 V−1 s−1 and m/z = 622,
K0 = 1.013 cm2 V−1 s−1) 90, 100]. From the mobility K value,
the collisional cross section (CCS) can be determined by the
following equation:
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Where the charge of the ion is represented by z, kb repre-
sents the Boltzman constant, m1 and mb are the masses of
molecular ion and the bath gas and N* is the number density.

TIMS-MS operation parameters

TIMS operation can be tuned for either wide range mobility
analysis, with a voltage ramp of ΔVramp = 200 V, or for
narrow mobility selection, with a narrow voltage ramp of
ΔVramp = 10–30 V. In both cases ramp times of up to
500 ms are used for analysis. Notice that TIMS mobility
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resolution depends on both the ramp size as well as the ramp
speed, where lower speeds give higher mobility resolutions
[88–90]. In addition to the ramp speed, the velocity of the
gas also defines the mobility resolution and trapping efficien-
cy of the TIMS analyzer. Increasing the velocity of the gas, by
changing the pressure difference between the front (P1 = 1.1–
4.3 mbar) and the end (P2 = 0.6–3.0 mbar) of the analyzer
region also increases the mobility resolution. As the velocity
of the gas increases the ions experience a greater drag force,
requiring higher electric fields in order to be trapped. A con-
stant radiofrequency (RF) is applied to the entrance, analyzer
and exit region of the TIMS analyzer (frequency of 880 kHz
with 200–300 V peak-to-peak). Each funnel electrode is di-
vided into four electrically insulated segments that are used to
create a dipole field in the entrance and exit section, to focus
the ions downstream, and a quadrupolar field in the separation
region to radially confine the ions during the ion trapping and
analysis. That is, in the entrance and exit funnel sections, the
RF potential applied to the ion funnel is 180° out of phase
between adjacent plates. This results in a pseudo-potential,
which pushes the ions away from the funnel walls.
However, in the analyzer section, the phase of the RF potential
does not alternate between adjacent plates but only between
adjacent segments. The purpose of the quadrupolar field in the
analyzer section is to confine (trap) the ions radially and avoid
ion losses due to diffusion. The TIMS analyzer was coupled to
a maXis Impact QUHR-TOF (Bruker Daltonics Inc.,
Billerica, MA). Data acquisition was controlled using in-
house software and synchronized with the maXis Impact ac-
quisition program.

Atmospheric pressure ionization sources

Electrospray ionization source (ESI) An orthogonal, com-
mercial ESI source based on the Apollo II design (Bruker
Daltonics, Inc., MA) was used. Briefly, sample solutions were
introduced into the nebulizer at a rate of 120–180 μL/min
using an external syringe pump. Typical operating conditions
were 4000–4500 V capillary voltage, 600 V endcap capillary
offset voltage, 10 L/min dry gas flow rate, 1.0 bar nebulizer
gas pressure, and a dry gas temperature 180 °C. Ions from the
ESI source are introduced via a 0.6 mm inner diameter,
single-bore glass capillary tube, which is resistively coated
across its length, allowing the nebulizer to be maintained at
ground potential, while the capillary exit was biased to
around 180 V.

nanoElectrospray ionization source (nanoESI) A custom-
built, pulled capillary orthogonal nanoESI source was utilized
for all the experiments. Quartz glass capillaries (O.D.: 1.0 mm
and I.D.: 0.70 mm) were pulled utilizing a P-2000 micropi-
pette laser puller (Sutter Instruments, Novato, CA) and loaded
with 10 μL aliquot sof the sample solution. A typical nanoESI

source voltage of 600–1200 Vwas applied between the pulled
capillary tips and the TIMS-MS instrument inlet. Ions were
introduced into the TIMS cell via a stainless steel tube
(1/16 × 0.020^, IDEX Health Science, Oak Harbor, WA),
which was held at room temperature.

Theoretical calculations

Theoretical collisional cross sections were calculated from X-
ray structures for myoglobin (pdb: 1YMB), cytochrome C
(pdb: 1HRC), β-lactoglobulin (pdb:4GNY), and ubiquitin
(pdb:1UBQ), and were used as is [100–103]. Ion mobilities
were calculated for the X-ray structures using the trajectory
method (TM) utilizing IMoS (v.106W64dsoftware
[104–108]. This calculation software allows the calculation
of collisional cross sections of ions using both traditional
methods as well as new methods such as Diffuse Hard
Sphere Scattering and Diatomic Trajectory Method. For mol-
ecules without defined partial charges the charge is centered at
the center of mass of the protein. Gas particles originate from a
bounding box from the x, y, and z planes and are diagonalized

Fig. 1 Ion-neutral collisional cross section dependence on the m/z for
globular proteins (myoglobin and cytochrome C) and barrel proteins (β-
lactoglobulin and ubiquitin) in their native and denature states. In black,
theoretical values obtained from reported tridimensional structures based
on X-ray measurements
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in order to determine the collisional cross section of the ions.
Calculations were performed with 3 TM rotations, with 300,
000 gas molecules, and 92 % Maxwell distributed remission
velocity. Mobility calculations were performed for all experi-
mentally observed charge states.

Results and discussion

Ion mobility spectrometry (IMS) combined with molecular
dynamic simulations has proven to be a versatile technique
for the analysis of intermediate and equilibrium structures of

Table 1 Ion-neutral collisional
cross sections measured by
nanoESI-TIMS-MS in nitrogen as
a bath gas for proteins, protein –
DNA complexes and protein-
protein complexes

Protein m/z (charge), CCS;

Avastin 5960 (+25), 6709; 5731 (+26), 6997; 5519 (+27), 7031;
BSA dimer 5870 (+23), 6208; 5625 (+24), 6454; 5400 (+25), 6699;
BSA 4467 (+15), 4200, 4188 (+16), 4291, 3941 (+17), 4351; 3722

(+18), 4476;
β-Lactoglobulin dimer 2831 (+13), 3430;
DREAM* 2455 (+12), 3025, 3181; 2266 (+13), 3561, 3756, 4078; 2104

(+14), 4029, 4195, 4315, 4526; 1964 (+15), 4243, 4459, 4809;
1841 (+16), 4526, 4829, 5024; 1733 (+17), 4663, 4829, 5102;
1636 (+18), 4751, 5317; 1473 (+20), 5151, 5639; 1403 (+21),
5756, 5912, 6253, 6467; 1339 (+22), 5951, 6184, 6340,6526;
1281 (+23), 6223, 6585, 6818; 1227 (+24), 6760, 6917, 7062

Carbonic anhydrase 2887 (+10), 2530; 2625 (+11), 2606; 1444 (+20), 5422; 1375(+
21), 5510; 1312 (+22), 5863; 1255 (+23), 6625; 1203 (+24),
6809; 1155 (+25), 6962; 1110 (+26), 7144, 1069 (+27), 7317;
1031 (+28), 7475; 996 (+29), 7596; 962 (+30), 7710; 931
(+31), 7831; 902 (+32), 7943; 875 (+33), 8139; 849 (+34),
8276; 825 (+35), 8380; 802 (+36), 8559; 780 (+37), 8692; 760
(+38), 8755; 740 (+39), 8906

Myoglobin 2147 (+8), 2187; 1908 (+9), 2399,2465; 1717 (+10), 2749, 2805,
2882, 2937; 1561 (+11), 2992, 3052, 3125, 3228, 3300; 1431
(+12), 3123, 3192, 3209, 3300, 3337, 3385, 3446, 3374, 3446,
3531, 3591; 1227 (+13), 3809; 1145 (+14), 3945; 1073 (+15),
4084; 1010 (+16), 4245; 954 (+16), 4222; 904 (+17), 4266

β-Lactoglobulin 3680 (+5), 1422; 3067 (+6), 1636; 2629 (+7), 1773; 2300 (+8),
1995; 2044 (+9), 2155, 2381; 1840 (+10), 2867, 1673 (+11),
3343; 1533 (+12), 3449; 1415 (+13), 3518; 1314 (+14), 3655;
1227 (+15), 3795; 1150 (+16), 3937; 1082 (+17), 4076; 1022
(+18), 4207; 968 (+19), 4867; 876 (+21), 5152

Ubiquitin 2125 (+4), 1149; 1700 (+5), 1229; 1417 (+6), 1699; 1214 (+7),
1794; 1063 (+8), 1975; 944 (+9), 2069; 850 (+10), 2213; 773
(+11), 2292; 708 (+12), 2468; 654 (+13), 2624

Cytochrome C 2064 (+6), 1289, 1438; 1769 (+7), 1307, 1574, 1922, 2083; 1548
(+8), 1686, 1925, 2249, 2468, 2496; 1376 (+9), 1637, 2024,
2258, 2358, 2388, 2631; 1238 (+10), 2181, 2365, 2508, 2652,
2717; 1125 (+11) 2403, 2553, 276, 2813, 2861; 1032 (+12),
2678, 2805, 2877, 3189; 952 (+13), 2794, 2969, 2998, 3044;
825.6 (+14), 3279, 3318, 3358; 774 (+16), 3036, 3311, 3382,
3465, 3557; 728 (+17), 3516, 3611, 3663, 3724; 688 (+18),
3598, 3689, 3743, 3778; 651 (+19), 3727, 3798; 619 (+20),
3885, 589 (+21), 3907,3954

Calmodulin 2405 (+7), 1860; 2104 (+8), 1915, 2103, 2378; 1870 (+9), 2256,
2396, 2750, 2933; 1684 (+10), 2741, 2981; 1530, (+11), 2957,
3097, 3256, 3323; 1403 (+12), 3170, 3323, 3402; 1295 (+13),
3512, 3591, 3707; 1202 (+14), 3695, 3749, 3847; 1122 (+15),
3841, 3944; 1052 (+16), 1091; 990 (+17) 4212, 935 (+18),
4341

HMGA2 1477 (+8), 2114; 1313 (+9), 2353; 1181 (+10), 2511; 1074 (+11),
2704; 984 (+12), 2869, 2890; 909 (+13), 2998; 844 (+14),
2967, 3059, 3130; 787 (+15), 3236, 3334; 739 (+16), 3339

FL876 +HMGA2 (GGATATTGCCCCCGCAATATCC) 2639 (+7), 1624; 2309 (+8), 1658; 2053 (+9), 1741, 2003; 1847
(+10), 1769, 1621, 2082, 2169, 2286; 1680 (+11), 2148, 2423;
1540 (+12), 2582, 2748; 1421 (+13), 2706, 2886; 1320 (+14),
2810, 3031, 3258; 1232 (+15), 2921, 3204; 1155 (+16), 3300,
3548; 1087 (+17) 3651, 4003;

FL875 +HMGA2 (FL875:

CCCCCCATATTCGCGATTATTG

CCCCCGCAATAATCGCGAATATGGGGGG)

3401 (+8), 1991; 3023 (+9), 2069; 2721 (+10), 2098, 2140, 2246,
2459
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biomolecules enabling the correlation of ion-neutral, colli-
sion cross sections (CCS) with candidate structures
[109–115]. In particular, it has been shown that by using
soft ionization techniques (e.g., ESI) the evaporative cooling
of the solvent leads to a freezing of multiple conformations,
which has permitted the study of the conformational space
dependence on the solvent conditions (e.g., native vs dena-
tured), bath gas collision partner, and temperature [116,
117]. For example, changes in the starting solution condi-
tions (e.g., pH, organic content, etc.) can induce changes in
the charge state distribution and the conformational space
that is accessible during the IMS-MS measurements
[118–121]. In addition, changes in the conformational space
can be observed as a function of the desolvation process and
upon activation prior to the IMS-MS measurements.
Previous work using TIMS-MS has shown the possibility
to trap a wide mobility range from small molecules to small
proteins [122, 123]; however, it was also demonstrated that
the trapping efficiency is a function of the electrode geom-
etry, bath gas profile and electrical confining parameters
(e.g., radiofrequency value and amplitude).

Biomolecules can exist in several conformational states
inside the cell and their functions are directly related to the
folding/unfolding mechanism. Thus, to better understand the
structural properties of biomolecules there is a need to accu-
rately measure the CCS, which changes as a function of their
conformational state. Biomolecular ions can be introduced in
the TIMS analyzer in native and denatured states (see Fig. 1).
The increase in charge state is generally accompanied by the
observation of more denatured conformational states with
higher CCS values. That is, the degree of folding/unfolding
can be observed as the charge state changes, reflecting biomo-
lecular structural changes and any major transitions. For ex-
ample, in the case of globular proteins (e.g., cytochrome C
12 kDa and myoglobin 17 kDa), a change from single native
state to multiple molten globule and unfolded conformational
states are observed. Notice that while the CCS values agree
with previously reported CCS using DT-IMS-MS and
TWIMS-MS, within 5 %, the higher resolution of the TIMS
permits, for the first time, the separation of a larger number of
conformations. Moreover, in the case of barrel proteins (e.g.,
Ubiquitin 8.5 kDa and β-Lactoglobulin 18.4 kDa) in addition
to the unfolding trend, abrupt changes in the CCS can be
correlated to significant conformational transitions. When
compared to other structural measurements (e.g., solution
NMR and X-ray crystallography, solid line in Fig. 1), it can
be seen that the increase in CCS with the charge state is not
merely due to the charge dependence of the CCS, but a con-
sequence of structural changes in the molecular ion (see
Eq. 1). A more detailed list of CCS values as a function of
the charge state is shown in Table 1 for protein, DNA-protein
complexes, and protein-protein complexes using both ESI and
nanoESI sources.

The charge state dependence with the CCS shows that, as
the protein mass increases, there is a need to measure higher
m/z in order to sample native conformations. Previous work
has shown that with extendedmass rangeMS analyzers, larger
proteins and protein complexes can be studied by IMS-MS
[124]. In the case of TIMS-MS, a similar approach can be
taken but different from other IMS variants, the experimental
conditions for molecular ion trapping and efficiency in the
TIMS analyzer plays a major role. For example, nanoESI-
TIMS-MS can separate larger molecular ions based on both
mobility and m/z (see example in Fig. 2 for the BSA dimer
132 kDa and the Avastin monomer 149 kDa) under native
conditions. However, it should be noted that the TIMS-MS
experiment can be performed under multiple trapping condi-
tions. That is, in TIMS ion trapping is based on compensating
the drift force (defined by the pressured difference in the tun-
nel region or bath gas velocity) with an electric field (see
Eq. 1). However, there are practical limitations on the value
of the applicable voltage difference across the tunnel region
and therefore the mobility range that can be studied (see ex-
amples in Fig. 3 for TIMS measured and for predicted K
values based on other IMS techniques [50, 70]). As we men-
tioned before, the higher the velocity of the gas the higher the

Fig. 2 a 2D-IMS-MS contour plot for a mixture of Avastin antibody and
BSA dimer.Mass spectra projections for Region 1 (Avastin) and Region 2
(BSA dimer)
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electric field required for the analysis. For example, when
TIMS-MS is operated at an A ~200 (vg ≈ 93 m/s), the required
field strength to trap the high mass protein ions in their native
state is Velution - Vbase < 360 V. Although this electric field is
technically achievably, the trapping efficiency is typically low
for high mass species. Nevertheless, under these conditions,
ion mobility resolutions (R = CCS/ΔCCS) of up to 400 have
been achieved for lower mass systems (see example in the
separation of hydroxylated polybrominated-diphenyl ethers
[125]). In the case of larger mass systems, a factor of <2x in
the resolving power can be compromised in order to achieved
higher trapping efficiencies. For example, when TIMS-MS is
operated at an A ~150 (vg ≈ 70 m/s) and A ~100 (vg ≈ 45m/s),
the required field strength to trap the high mass protein ions in
their native state is Velution - Vbase < 275 and <185 V, respec-
tively. Under these conditions large mass proteins like gluta-
mate dehydrogenase, and massive protein complexes, such as
Groel can be analyzed. Notice that although certain proteins
and protein complexes typically have a very high mass
(~800 kDa for Groel), a m/z range of up to 12,500 will suffice
to perform TIMS-MS experiments of proteins and protein
complexes in their native state.

Conclusions

In the present work we demonstrate the potential and versatil-
ity of TIMS for the analysis of proteins, DNA-proteins, and
protein-protein complexes in their native and denatured states.
In addition, it was shown that accurate CCSmeasurements are
possible and are in good agreement with previously reported
CCS values using other IMS analyzers (<5 % difference). The
main challenges for the analysis of high mass proteins and
protein complexes in the mobility and m/z domain were de-
scribed. That is, the analysis of high mass systems in their
native state will require the use of higher electric fields or a
compromise in the TIMS mobility resolution by reducing the
bath gas velocity. This is the first report of CCSmeasurements
of high mass biomolecules and biomolecular complexes
(~150 kDa) using TIMS-MS.
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