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MOTIVATION:

• Much of the financial industry relies on random-walk type
stochastic models. (efficient market hypothesis)

• In physics, we associate those with equilibrium systems, e.g. a
gas at fixed temperature T , fluctuations are Gaussian.

• Phase transitions (water-vapor, etc) occur if temperature is
fine-tuned T = Tcritical by external agent, correlations of all
sizes.

• This seems an unlikely scenario for modeling financial markets.



PARADIGM:

• Real-world financial markets (+more) exhibit fluctuations of
all sizes (comparable to earthquakes, Gutenberg-Richter law).

• This is indicative of a critical system.

• Lacking an external agent, criticality should arise by
self-organization (Per Bak, 1996).

• Want a microscopic model, interacting traders, with
self-organizing critical (SOC) dynamics.



LATTICE GEOMETRY:
r j

time

10 j−1 j+1j n

Interpretation:

• discretized time j = 0 . . . n

• return rj = log(
Φj

Φj−1

), price Φj

Generic market:

• capture essence of dynamics



THE PLAN:

Devise computer simulation of the returns field r implementing
self-organized criticality (SOC)

Take inspiration from Bak-Sneppen algorithm (bureaucrat model)

• find the (least adopted) worst rj

• replace rj and neighbors rj±1 with random draws

• leads to a self-organized critical system



ALGORITHM:

vj = rj(rj+1 − rj−1)

signal
V = max{|v0|, |v1|, . . . , |vn|}

find (time) jS for which |vjS | = V , this is the ‘worst’ site

update
rjS−1 ← x−1 rjS ← x0 rjS+1 ← x+1

where x0,±1 from normal pdf ∝ exp(− x2

2w
).

• choice is empirical, trial and error, however . . .



MOTIVATION (with hindsight):

let E [. . .] be expected value of some stochastic process for r(t)

volatility (variance)

W (t) = E [r(t)2]− E [r(t)]2

in discretized form E [. . .] ≃ 〈. . .〉

dW (t)

dt
≃ 〈rj (rj+1 − rj−1)〉 − 〈rj 〉〈(rj+1 − rj−1)〉

assuming 〈rj 〉 = 0, then market dynamics (updating algorithm)

is driven by eliminating extreme changes of the volatility

max |dW (t)

dt
| ≃ |vj | = |rj(rj+1 − rj−1)|



SIMULATION DYNAMICS:

simulation “time” s, random start at s = 0, detail



as s →∞ avalanche size Λ→∞, lower envelope → gap function



frequency distribution of avalanche sizes

power law ∆N
∆Λ

= aΛ−b indicative of critical state



entropy evolution

def Rj = exp(rj) and entropy S = 1

n

∑n
j=1

Rj log Rj



RESULTS:

lattice gains distribution

number of counts ∆c in bin ∆r = 0.05.



Parameter-free model (almost)

• updating from normal pdf ∝ exp(− x2

2w
) s blind to w ,

max |vj | leads to same sequence of configurations

• scaling w → λw then rj →
√

λrj

• price time series, unit ∆

Φ(t) = Φ(t0) exp[
1

∆

∫ t

t0

dt ′r(t ′)] discretize  

pj = pj−1 exp(rj) and initial condition p0 = Φ(t0)



Parameter-free model (almost)

• updating from normal pdf ∝ exp(− x2

2w
) s blind to w ,

max |vj | leads to same sequence of configurations

• scaling w → λw then rj →
√

λrj

• price time series, unit ∆

Φ(t) = Φ(t0) exp[
1

∆

∫ t

t0

dt ′r(t ′)] discretize  

pj = pj−1 exp(rj) and initial condition p0 = Φ(t0)

Simulation w = 1

• lattice size n = 780 is the only parameter

• adjust scales ∆, λ, p0 to match historical market data



NASDAQ (2005-Aug to 2008-Aug)

historical H, lattice L



Set 1

lattice nasdaq



Set 1

lattice nasdaq



Set 1

lattice nasdaq



Figures

• volatility from 3-point variance (both lattice and nasdaq)

vj =
1

3

j+1∑
j ′=j−1

(rj ′ − r̄)2 with r̄ =
1

3

j+1∑
j ′=j−1

rj ′

• compare to nasdaq 1-minute data with similar patterns,
selection: “It is worth noting that fully fleshed-out and

detailed pictures ... put a heavy premium on the ability of the

eye to recognize patterns that existing analytic techniques

were not designed to identify or assess.” [Mandelbrot:1997]



Set 2

lattice nasdaq



Set 2

lattice nasdaq



Set 2

lattice nasdaq



Set 3

lattice nasdaq



Set 3

lattice nasdaq



Set 3

lattice nasdaq



Set 4

lattice nasdaq



Set 4

lattice nasdaq



Set 4

lattice nasdaq



VOLATILITY DYNAMICS

garch(1,1) model [Engle 1982, Bollerslev 1986]

σ2
t+∆ = α0 + α1ǫ

2
t + β1σ

2
t

• time-dependent volatility vt = σt
2

• random shock ǫt = σtzt with zt ∼ N(0, 1)

• observe volatility clustering

• fit parameters α0, α1, β1

apply to previous data sets



Set 1 lattice Set 1 nasdaq

α0 3.23E-08(1.01E-08) 1.11E-08(5.35E-09)
α1 0.043332(0.008898) 0.130702(0.019696)
β1 0.891148(0.028338) 0.859163(0.026981)

Set 2 lattice Set 2 nasdaq

α0 4.14E-09(1.61E-09) 4.20E-09(1.07E-09)
α1 0.022450(0.005070) 0.031982(0.007263)
β1 0.966177(0.007889) 0.951740(0.010025)

Set 3 lattice Set 3 nasdaq

α0 6.38E-09(1.46E-09) 5.87E-09(2.02E-09)
α1 0.015515(0.003301) 0.022312(0.008688)
β1 0.972397(0.004485) 0.956839(0.014609)

Set 4 lattice Set 4 nasdaq

α0 2.76E-08(5.42E-09) 3.73E-09(2.70E-09)
α1 0.045674(0.007692) 0.069064(0.005237)
β1 0.911153(0.013877) 0.936347(0.003615)



Conclusion

Model

• microscopic model, nearest-neighbor interactions

• driven to self-organized critical state

• off-equilibrium paradigm

• minimalistic geometry, capture essential dynamics

• no intrinsic units, scale free

Features

• realistic fat-tails gains distribution

• believable price time series

• exhibits volatility clustering

• realistic GARCH dynamics

• hard to distinguish from real market data!



Sequel: Extension to a gauge model

GOALS:

• include the effect of arbitrage opportunities

• those only exist for short times, fluctuations, quantum physics

• described by a gauge field theory [Ilinski 2001]

• transcribe updating algorithm to gauge model → SOC

DESIGN:

• lattice quantum field theory

• numerical simulation



One-asset lattice model [Ilinski 2001]

tim
e

cash value (site)

interest rate (link)

(site) asset value

assetcash

(link) asset value change

conversion factor (link)



gauge fields Θµ(x) on links

elementary plaquette

tim
e

cash asset
x

Pµν(x) = Θµ(x)Θν(x + eµ)Θ−1
µ

(x + eν)Θ
−1
ν

(x)

is a measure for arbitrage gains, gauge group is R+

plaquette action

S0[Θ] =
∑

Pµν(x)

gives rise to quantization via path integral

Z (β) =

∫
[dΘ] e−βS0[Θ]



matter fields Φ(x) on sites

numerical simulation → background gauge field Θ

then, returns from matter field on asset links

tim
e

asset

x

rx = log[Φ̄(x)Θν(x)Φ(x + eν)]

with Φ̄ = 1/Φ, gauge invariant (devoid of arbitrary scale/units)

Bak updating → self-organized criticality



update detail

find “worst” site x , max |rx(rx+eν
− rx−eν

)|

tim
e Θν

asset

Φ

x+eν

x

replace Φ(x : x + eν)⇐ and Θν(x − eν : x : x + eν)⇐
apply perturbation χ log[Θν(x − eν)Θν(x)Θν(x + eν)]/3

parameter χ



tuning parameter χ, control shape of returns distributions

adaptable to various markets



Conclusion: Sequel

Model and Features

• lattice fields on ladder ⇒ cash, assets, and flow thereof

• gauge invariance ⇒ blindness to units, scale free

• field quantization ⇒ minimize arbitrage up to fluctuations

• Bak-like updating ⇒ self-organized criticality, off-equilibrium

• extended updating flexibility ⇒ market characteristics, various

Status

• work in progress . . .


