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12.4 Inferences in'Multiple Regression
FE 52

,bké,t’

Estimated sta_ndard error of B,- ina multiplé regression:

G BT ST
%"%JEW—QM~R5 = =

‘where R2 is the R? value obtamed by letting x; be the dependent variable in a
muluple regression, with all 1epxs independent variables. Note that se is the
"res1dual standard dev1at10n for the muluple regression of YOI Xy, X2y . iy X

'/6:4 41)5\/

As in simple regression, the larger the residual standard deviation, the larger
the uncertainty in estimating coefficients. Also, the less variability there is in the

. predictor, the larger is the standard error of the coefficient. The most important use

of the formula for estimated standard error is to illustrate the effect of collinearity.
If the 1ndependent variable x; is highly collinear with one or more other independ-
ent variables, R is by definition very large and 1 — R2 is near zero. Division by a
near-zero number yields a very large standard error. Thus one important effect of
severe collinearity is that it results in very large standard errors of partial slopes and
therefore very inaccurate estimates of those slopes.

The term 1/ L___ﬁz) is called the variance inflation factor (VIF). It measures
how much the variance (square of the standard error) of a coefficient is increased
because of collinearity. This factor is printed out by some computer packages and
is helpful in assessing how serious the collinearity problem is. If the VIF is 1, there
is no collinearity at all. If it is very large, such as 10 or more, collinearity is a serious
problem.

A large standard error for any estimated partial slope indicates a large prob-
able error for the estimate. The partial slope Bi of x; estimates the effect of increas-
ing x; by one unit while all other xs remain constant. If x; is highly collinear with
other'xs, when x; increases, the other xs also vary rather than staying constant.
Therefore, it is difficult to estimate B, and its probable error is large when x, is se-
verely collinear with other independent variables.

The standard error of each estimated partial slope B, isused in a conﬁdence
interval and statistical test for B]. The confidence interval follows the familiar for-
mat of estimate plus or minus (table value) (estimated standard error). The table
value is the ¢ table with the error df, n — (k + 1).

" The confidence interval for §; is

B’ a/2 SB B] ﬁj + ta/Z Sﬁ,-
where 1, cuts off area /2 in t'hey tail of a ¢ distribution with df = n — (k + 1),
the error df. :

EXAM?&E 12.13

Calculate a 95% confidence interval for B;, the coefficient. assomated with the
explanatory variable INCOME in the three-predictor model for the data of
Example 12 12.
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Solution The least-squares estimator of ;69 is ﬁZz 26528 with standard
sg, = .10127. The upper .025 percentile of the ¢ distribution withdf = n «(
=21 = (3+1) =175 2.110. The 95% confidence interval on B3 is compy

Bs .ty = 26528 = (2.110)(10127) = 05160 < B, = 47896

EXAMPLE 12,14

Locate the estimated partial slope for x; and its standard error in the o
Example 12.11. Calculate a 90% confidence interval for 8.

Selution f; = .01291 with standard error .00283. The tabled ¢ value for
10/2 = .05 and df = 54 — (4 + 1) = 49 is 1.677. The 90% confidence i
computed as follows :

Bi % tupp, = 01291 — (1677)(00283) =< B, = 01291 + (L677)(.0
' =>.00816 < B, = .01766

The usual null hypothesis for inference about Bjis Ho: B; = 0. This
sis does not assert that x; has no predictive value by itself. It asserts that
,@We over and above that contributed by fhe ot
pendent Variables; that s, if all ofher xs had already been used in a re
model and then x; was added last, the prediction would not improve. The t
B; = 0 measures whether x; has any additional (e.g., unique) predictive v:
t test of this Hy is summarized next. —— B
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12.5 Testing a Subset of Regression Coefficients 697
EXAMPLE 12,15 . Pes2

Refer to the output given in Example 12.14, °

a. Test Hy: By = 0 versus H,: B, #0 at the o = .10 level.
b. Is the conclusion of the test compatible with the confidence interval?

Solution '
8. The test statistic for Hy: By, = 0 versus H,: 8,#0 is
4 oloey | e
= e m s = 4,567
85, 00283 56

The .05 upper percentile for the ¢ distribution with df = 54 — @A+1)=
49 is.1.677. Because the computed value of the test statistic is greater
than the tabled.value, we conclude there is significant evidence to reject
~ Hp. Thus, xy has additional We of the other
three explanatory variables. - .
B. The 90% confidence interval for 8y did not include 0, which indicates
that Hy: 81 = 0 should be rejected at the o = .10 level,

EXAMPLE 12.16

Refer to Example 12.12. Locate the ¢ statistic for testing Hy: B; < 0 versus
H,: B3 > 0in the output given in Example 12.12. Do the data support H,: 3, > Qat
any of the usual values for a? '

Solution The ¢ statistics are shown under the heading STUDENT’S T. For X3
(INCOME), the ¢ statistic is 2.62, which is-computed as .26528/.10127. With df = 17,
the tabled values from the ¢ distribution are 2.576 and 2.898 for @ = .01 and .005, re-
spectively, Thus, Hy would be rejected at the & = 01 level but not at the o = 005 level.

The output lists a p-value under the column heading P. This p-value is for a

‘two-sided alternative hypothesis, H,: 5 # 0.The p-value for the T-sided alternative

o' Bs > 0 1STgIVen by p-value = Pr {7 > 2.62) = .00896 < .01 = .

The multiple regression F and ¢ tests that we discuss in this chapter test
different null hypotheses. It sometimes happens that the F test results in the rejec-
tion of Hy: By = B, = - -+ = B, = 0, whereas no ¢ test of Hy: B; = 0 is significant.
In such a case, we can conclude that there is predictive value in the equatjon as a
whole, but we cannot identify the specific variables that have predictive value.
Remember that each ¢ test is testing the unique predictive value. Does this variable
add predictive value, given all the other predictors? When two or more predictor-
variables are highly correlated among themselves, it often happens that no Xj can
be shown to have significant, unique predictive value, even though the xs together.
have been shown to be useful, If we are trying to predict housing sales based on
gross domestic product and disposable income, we probably cannot prove that
GDP adds value given DI, or that DI adds value given GDP.

&

Testing a Subset of Regression Coefficients

In the last section, we presented an F test for testing all the ‘cOefﬁci,en:tsv-in aregression
model and a ¢ test for testing one coefficient. Another Ftest of the null hypothesis tests
that several of the true coefficients are zero—that is, that several of the predictors have
no value given the others. For example, if we try to predict the prevailing wage rate in
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various geographical areas for clerical workers based on the national minimum yw,
national inflation rate, population density in the area, and median apartment
price in the area, we might well want to test whether the variables related to
(density and apartment price) added anything, given the national variables, ,
A null hypothesis for this situation would say that the true coefficie
density and apartment price were zero. According to this null hypothesis.
two independent variables together have no predictive value once minimum
and inflation are included as predictors. ‘
Theideais to compare the SS(Regression) or R? values when density anda
ment price are excluded and when they are included in the prediction equ'
- When they are included, the R? is automatically at least as large as the R2when
are excluded because we can predict at least as well with more information
less. Similarly, SS(Regression) will be larger for the complete model. The F te
this null hypothesis tests whether the gain‘is more than could be expected by ]
alone. In general, let k be the total number of predictors, and let g be the numb
predictors with coefficients not hypothesized to be zero (g <k).Thenk — grep
the number-ofpredictors with coefficients that are hypothesized to be zero. The
is to find SS(Regressimmwel) an
only the g predictors that do not appear in the null hypothesis (the reduced mo
Once these have been computed, the test proceeds as outlined next. The not
easier if we assume that the reduced model contains Bi, B, - - - 5 By, s0 that t
ables in the null hypothesis are listed last.

VHO: 3g+l:Bg+2’:"" = ﬁ[c: 0 Kk ’j
H,: Hyis not true. L S S
b S(Regression, reduced)]/ (k
: ’ SS(Residual, complete)/[n — (k + 1)]
RR.: F > F,, where F, cuts off a right-tail of area a of the 7 distributi

[SS(Regression, complete) — S

TS:F=

withdfy = (k — g) and df, = [n = (k + D)}

~Check assumptions and draw conclusions.

EXAMPLE 12.17

A state fisheries commission wants to estimate the number of bass cau
given lake during a season in order to restock the lake with the app.
number of young fish. The commission could get a fairly accurate assess
the seasonal catch by extensive “netting sweeps” of the lake before and
season, but this technique is much too expensive to be done routinely. Th
the commission samples a number of lakes and records y, the seaso
(thousands of bass per square mile of lake area); x;, the number of lakesh
dences per square mile of lake area; x,, the size of the lake in square mi
if the lake has public access, 0 if not; and x4, a structure index. (Struct
weed beds, sunken trees, drop-offs, and other living places for bass.) Th:
shown in Table 12.13. , |
The commission is convinced that residences and size are important
in predicting catch because they both reflect how intensively the lake

TABLE 12.13
Bass catch data

Lake
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TABLE 1213
Bass catch data

12.5 Testing a Subset of Regression Coefficients

V Xi

T A 22
Lake Catch Residence Size Access Structure
1 3.6 922 21 0 81
2 8 86.7 .30 0 26
3 2.5 80.2 31 0 52
4 2.9 87.2 40 0 64
5 1.4 64.9 44 0 40
6 9 90.1 56 0 22 ‘
7 32 60.7 78 0 80
8 2.7 50.9 1.21 0 60
9 2.2 86.1 34 1 30
10. 5.9 90.0 .40 1 90
11 33 80.4 52 1 74
12 2.9 75.0 .66 1 50
13 3.6 70.0 .78 1 61
14 24 64.6 91 1 40
15 9 50.0 1.10 1 22
16 2.0 50.0 1.24 1 50
17 1.9 512 1.47 1 37
18 3.1 40.1 2.21 1 61
19 2.6 45.0 2.46 1 39
20 3.4 50.0 2.80 1 53

fished. However, the commission is uncertain whether access and structure are
useful as additional predictor variables. Therefore, two regression models (with all
four predictor variables entered linearly) are fitted to the data, the first model with
all four variables and the second model without access and structure. The relevant
portions of the Minitab output follow:

Full Model:

Regression Analysis: catch versus residenc, size, access, structur
SV —

—— R
e S

—
The regression equation is

catch = - 2.78 + 0.0268 residenc + 0.504 size ¢ 0.743 access + 0.0511 structur
Predictor Coef SE Coef T p
Constant ~2.7840 0.8157 -3.41 0.004
residenc 0.026794 0.009:41 2.93 0.010

size 0.5035. 0.2208 2.28 0.038
access 0.74239 0.2021 3.68 0.002
structur 0.051129 0.004542 11.26 0.000

§ = 0.389498 R-Sq = 91.4% R-Sq(adj) = 89.1%
Analysis of Variance

-Source DF 88 MS by P
Regression 4 24.0624 6.0156 39.65 0.000
Residual Error 15 2.2756 0.1517

Total 19 26.3380
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Reduced Model:

Regression Analysis: catch’ versus residenc; size
Pt

“The regress1on equatlon ig”
scatch = = 0 87 4.0 0394 res;Ldenc +-.00 828 size

Predict,orf o Coef SE ‘Coef T P
Constant - "=0.871 S2.4097 20,360,722
crésidenc.. 0.03941 7.7 0102733 1.447.0.168
size : 0.8280° © -0.6372°.1.30 0211

117387 k- Sq 11.1%  R-Sq(adj)
"AnalySJ.s of Var:.ance

Source S DR S

‘Regression .2 20913

‘Residual Error 17 . 23425
S Total L1900 264338

8. Write the complete and reduced models. ;

b. Write the null hypothesis for testing that the omitted variables have
(incremental) predictive value.

€. Perform an Ftest for this null hypothesis. .

Solution
a. The complete and reduced models are, respectively,

Yi = Bo + Bixn + Boxp + Bsx + Baxu + g

and

QJLAH‘L’V Yi = Bot+ Bixa t+ Bxp + &
The corresponding multiple regression least-squares equations base
the sample data are

Complete: j = —2.78 + .0268x; + EO% + 743x; + 051D
Reduced: § = —.87 + .0394x; + .828x; '

®. The approprlate null hypothems of no predzctlve power for x3 and
Hy: By = By = 0. - : \ = T
€. The test statistic for the H of part (b) makes use of SS(Regresswn
complete) = 24.0624, SS(Regression, reduced) = 2.913, SS(Residu:
complete) = 2.2756, k = 4, g = 2, and n = 20:

[SS(Regression, complete) — SS(Regressmn reduced)]/ ¢

SS(Residual, complete)/ (20 - 5)

_(24.0624 — 2.913)/2 -
T 2.2756/(20 — 5)

TS.: F=

= 69.705

The tabled value Fg; for 2 and 15 df is 6.36. The value of the test statistic
larger than the tabled value, so we have conclusive evidence that the acg
structure variables add predictive value ( p < .0001).
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