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variance (Chapters 14 through 18). As you study these seven chapters, try when-
~ ever possible to make the connection back to a general linear model; we’ll help
you with this connection. For Sections 12.3 through 12.10 of this chapter, we will
concentrate on multiple regression, which is a special case of a general linear
model. ..

Estimating M@E&Epﬁ@ Regression Coefficients

The multiple regressmn model relates a response y to a set of quantitative inde-
pendent variables. For a random sample of n measurements, we can write the ith
observation as

= By + Bxy + Bzxrz

e+ Bty E=1,2,... nn>k)

where x,-l, X, - .. X are the settmgs of the quant1tat1ve mdependent variables
corresponding to the observation y;. o
To find least-squares estimates for By, ﬁl, . and Bk in a multiple regres—

sion model, we follow the same procedure that we did for a linear regression model
in Chapter 11. We obtain a random sample of n observatlons we find the least-
squares: predlcnon equatlon

J=Bo+ By + + ﬁkxk

by choosing Bo, By, . .., B to minimize SS(Residual) = Z,;(y; — $)*. However,
although it was easy to writé d0wn the solut10n§ to ,6’0 and B, for the linear regres-
sion model, :

y=PB+Bux+te

we must find the estimates for Bos By, - + -+, By by solving a set of simultaneous equa-
tions, called the normal equations, shown in Table 12.5.

Yi Be v}fuiﬁ X By

i

1 Syi=nfy + SxB, teeet 2 xui
Fa Txgy = ZaBe + DAy oot Zuanb

k2 X = aghy + Txpxaby oot szzkﬁk

Note the. pattern associated with these equations. By labeling the rows and
columns as we have done, we can obtain any term in the normal equations by -
multxplymg the row and column elements and summing. For example, the last term
in the second equation is found by multiplying the row element (x;;) by the column
element (x;,) and summing; the resulting term is 2x;,x,/3,. Because all-terms in
. the normal equations can be formed in this way, it is fairly simple to write down the
equations to be solved to obtain the least-squares estimates B, B, . . . ; 8. The so-
lution to these equations is not necessarily trivial; that’s why we’ll enlist the help of
various statistical software packages for their solution.
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TABLE 12.6
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EXAMPLE 12.5

Weight Exposure
Loss, y Time, x; Relative
- (pounds) (hours) Humidity, x;
4.3 4 20
5.5 5 20
6.8 6 20
8.0 7 20
4.0 4 30
52 5 30
6.6 6 30
75 7 .30
2.0 4 40
4.0 5 40
5.7 ) 40
7 40

An experiment was conducted to investigate the weight loss of a compound fo
ferent amounts of time the compound was exposed to the air. Additional info
tion was also available on the humidity of the environment during exposure.
complete data are presented in Table 12.6. '

6.5

a. Set up the normal equations for this regression problem if the assume
model is ‘ R

y = Bot Bixy + Boxy + g
where x; is exposure time and x; is relative humidity.

b. Use the computer output shown here to determine the least-squares -
estimates of B, B1, and ;. Predict weight loss for 6.5 hours of exposur
and a relative humidity of .35.

200
520
.30
30
230
.30
40"
.40 -
40
.40
.35 .
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~ Dependent Variable: WI_LOSS  WEIGHT LOSS .
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12.3 Estimating Multiple Regression Coefficients

Analysis of Variance

Sum of Mean

“‘Source . DF Squares Square 'F Value Prob>F.
 Model , 2 31.12417 - 15 .8g208 104.133° 0.0001
Error = - 9 1. 34500.,; 0.14944 . S
C Total 11 32, 46917
Root MSE 038655 R-square 0.9586
Dep Mean 5.50833 Adj R-sg 0.9494
Cvom o - 7001810°
*  Parameter Estimates -
S , "Parameter - _St»and'a_yrd T for HO: : e SR
Variable * DF. - ;‘Estimate ; Error Parameteér=g Prob > |1l

INTERCEP 1 ‘0% 666667» 0: 69423219 i
TIME . .1 . -17.316667 :
CHUMID © o1 *8"000000 N
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Solution

a. The thr'e‘e normal equations for this model are shown in Table 12.7.

Yi By xabBy B
1 Z Yi ”[30 + 2 xi1/§1 + 2 Xizéz
X1 > XY = 2 xu/;o + 2 Xizllél + 2 xnxmé'z
X2 D) XpYi = 2 XQZ;O + 2 xizxillél + 2 Xzzzﬁz

fl

For these data, we have
>0 = 66.10 %1 = 66 > xp = 3.60
> xqy; = 383.3 D xoy; = 19.19 > xax, = 19.8

Exizl = 378 Exlzz = 1.16
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Substituting these values into the normal equation yields the result
' Fitness walking t.

- shown here:

™

661 = 123, + 66p3, + 3.66,

3833 = 6683, + 3783, + 19.853,

1919 = 3.66, + 1983, + 1163, )
©. The normal equations of part (a) could be solved to determine f,, By,

and f3,. The solution would agree with that shown here in the output.
The least-squares prediction equation is ’ :

$= 0.667 + 1.317x, — 8.000x,

where x; is exposure time and x; is relative humidity. Substituting x; = 6
and x, = .35, we have

¥ =0.667 + 1.317(6.5) — 8.000(.35) = 6.428

This value agrees with the predicted value shown as observation 13 in
output, except for rounding errors.

variable name.

EXAMPLE 12.6

capacity as measured by maximal oxygen uptake. Direct measurement of maxim
oxygen is expensive, and thus is difficult to apply to large groups of individual
a timely fashion. The researcher wanted to determine if a prediction of maxil
oxygen uptake can be obtained from a prediction equation using easily measur;
explanatory variables from the runners. In a preliminary study, the kinesiolo;
randomly selects 50 males and obtains the following data for the variables:

1

¥ = maximal oxygen uptake (in liters per minufe)
x1 = weight (in kilograms)
X, = age (in years)
Xx3 = time necessary to walk 1 mile (in minutes) -
X4 = heart rate at end of the walk (in beats per minute)

The data shown in Table 12.8 were simulated from a model that is consistent
information given in the article “Validation of the Rockport Fitness Walking
in College Males and Females,” Research Quarterly for Exercise and Sport (1
-152-158. ~




