1: Which of the following reactions is NOT a redox reaction?
i. $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})---->\mathrm{SO}_{2}(\mathrm{~g})$
ii. $\mathrm{Fe}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})--->\mathrm{FeCl}_{2}(\mathrm{~s})$
iii. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})--->\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
A: i only
B: ii only
C: iii only
D: i \& ii
E: all are redox

2: Which of the following reactions correctly balances the redox reaction shown, in an acidic solution:

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq})--->\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

i. $6 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+\mathrm{I}_{2}--->4 \mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{I}^{-}+4 \mathrm{H}^{+}$
ii. $6 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+3 \mathrm{I}_{2}--->4 \mathrm{H}_{2} \mathrm{SO}_{3}+6 \mathrm{I}^{-}+4 \mathrm{H}^{+}$
iii. $2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+3 \mathrm{I}_{2}--->4 \mathrm{H}_{2} \mathrm{SO}_{3}+6 \mathrm{I}^{-}$
A: i only
B: ii only
C: iii only
D: none of these
E : the original

3: Which of the following salts are not soluble in water?
i. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
ii. $\mathrm{K}_{2} \mathrm{CO}_{3}$
iii. KMnO_{4}
iv. CdS
A: i only
B: i \& ii
C: iii only
D: iv only
E: ii \& iv

4: The US Navy once proposed a communication system for use with submarines. The system used a radio frequency of 76 Hz . What is the wavelength of this signal through a vacuum?
A: 3.95 cm
B: $3.95 \times 10^{6} \mathrm{~m}$
C: $2.28 \times 10^{10} \mathrm{~m}$
D: 0.395 m
E: $2.53 \times 10^{-7} \mathrm{~m}$

5: Calculate the frequency of light emitted from a hydrogen atom when an electron falls from the $n=5$ level to the $n=2$ level.
A: 435 Hz
B: $6.9 \times 10^{5} \mathrm{~Hz}$
C: $1.3 \times 10^{20} \mathrm{~Hz}$
D: $6.9 \times 10^{14} \mathrm{~Hz}$
E: $2.3 \times 10^{-3} \mathrm{~Hz}$

6: Which of the following is an allowable quantum number set?
A: $\{4,1,2,1 / 2\}$
B: $\{3,1,-1,-1 / 2\}$
C: $\{1,0,1,1 / 2\}$
D: $\{1,0,0,1\}$
E: $\{2,2,0,1 / 2\}$

7: If you had a mixture of K^{+}and Ag^{+}ions in solution. Which of the following reagents could you use to separate the two ions?
A: $\mathrm{HBr}(\mathrm{aq})$
B: $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
C: $\mathrm{HClO}_{3}(\mathrm{aq})$
D: $\mathrm{NaNO}_{3}(\mathrm{aq})$
$\mathrm{E}: \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$

8: How many electrons could have the the following quantum numbers: $\mathrm{n}=2$ and $\mathrm{m}_{\ell}=-1$
A: 2
B: 8
C: 6
D: 1
E: 4

9: What is the correct ground state electron configuration for an element with 15 electrons?
A: $1 s^{2} 2 s^{2} 2 p^{5} 3 s^{2} 3 p^{4}$
B: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 d^{3}$
C: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
D: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
E: $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{2} 4 s^{2} 3 d^{3}$

10: Which of the following sets contain a strong electrolyte, a weak electrolyte, and a non electrolyte (in any order)
i. $\mathrm{HNO}_{3}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$
ii. $\mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{KBr}$
iii. $\mathrm{HClO}_{4}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
A: i only
B: ii only
C: i\& ii
D: i \& iii
E: ii \& iii

11: Which quantum number set, $\{\mathrm{n}, \mathrm{I}\}$, could describe the drawing below?

A: $\{2,2\}$
B: $\{4,2\}$
C: $\{2,1\}$ and $\{2,0\}$
D: $\{3,-1\}$ and $\{1,0\}$
E: $\{1,2\}$

Answer Sheet for Test "Fall 99 Review", 10/25/99
No. in No. on
$\underline{\underline{\text { Q-Bank }}} \xlongequal{\text { Test Correct Answer }}$
$\begin{array}{llll}1 & 3 & 1 & C\end{array}$
1502 B
$\begin{array}{llll}1 & 7 & 3 & D\end{array}$
$1 \quad 9 \quad 4 \quad$ B
$\begin{array}{llll}1 & 12 & 5 & \mathrm{D}\end{array}$
$\begin{array}{llll}1 & 14 & 6 & B\end{array}$
$\begin{array}{lll}1 & 16 & 7\end{array}$
$\begin{array}{lll}1 & 18 & 8\end{array}$
$\begin{array}{lll}1 & 20 & 9\end{array}$
$\begin{array}{lll}1 & 22 & 10\end{array}$
$\begin{array}{llll}1 & 32 & 11 & \text { B }\end{array}$

